

Geotechnical Engineering–I *BSc Civil Engineering – 4th Semester*

Lecture # 2 30-Jan-2015

by Dr. Muhammad Irfan Assistant Professor Civil Engg. Dept. – UET Lahore Email: mirfan1@msn.com Lecture Handouts: https://groups.google.com/d/forum/geotec-1

SOIL AS A THREE PHASE SYSTEM

SOIL AS A THREE PHASE SYSTEM

V = Total volume of soil mass $V_s = \text{Volume of soil solids}$ $V_w = \text{Volume of water}$ $V_a = \text{Volume of air}$ $V_v = V_a + V_w = \text{Volume of voids}$

W = Total weight of soil $W_s = \text{Weight of soil solids}$ $W_a = \text{Weight of air} \approx 0$ $W_w = \text{Weight of water}$

VOLUMETRIC RATIOS

1) Void ratio, e

 $e = \frac{\text{Volume of voids}(V_v)}{\text{Volume of solids}(V_s)} \qquad (0 < e < \infty)$

For sands, $0.5 \le e \le 0.9$ For clays, $0.7 \le e \le 1.5$ (or even higher)

VOLUMETRIC RATIOS

2) <u>Porosity</u>, n

 $n = \frac{\text{Volume of voids}(V_v)}{\text{Total volume of soil sample}(V_t)}$

 $\begin{array}{c|c}
& \downarrow \\
& \downarrow \\$

(0 < n < 1)

Typical range, 9-70% For sands, $25\% \le n \le 50\%$

3) <u>Air Porosity</u>, n_a '

 $n_a' = \frac{Volume \ of \ air(V_a)}{Total \ volume \ of \ soil \ sample(V_t)} \qquad (0 < n_a' < 1)$

4) Percentage Air Voids, n_a

$$n_a = \frac{Volume \ of \ air(V_a)}{Volume \ of \ voids(V_v)} \qquad (0 < n_a < 1)$$

VOLUMETRIC RATIOS

5) Degree of Saturation/Saturation Ratio, $S(or S_r)$

 $S = \frac{Volume \ of \ voids \ containing \ water(V_w)}{Total \ volume \ of \ voids(V_v)} \times 100\%$

 $(0 < S_r < 100\%)$

6) Volumetric Water Content, θν

 $\theta_{v} = \frac{Volume \ of \ voids \ containing \ water(V_{w})}{Total \ volume \ of \ soil \ sample(V_{t})}$

 $(0 < \theta_v < 1)$

WEIGHT RELATIONSHIPS

1) Moisture/Water Content, w

 $w = \frac{Weight \ of \ water(W_w)}{Weight \ of \ soil \ solids(W_s)} \times 100\%$

Air ρ_a $M_a \simeq 0$ Water ρ_w M_w M_w M_w M_s M_s

$$(0 < w < \infty)$$

Typical value for Sands >> 10-30% For clays >> 10% or higher typically

For some organic soils w>100%, even up to 500%. For quick clays *w* is typically > 100%.

WEIGHT RELATIONSHIPS

2) <u>Unit Weight</u>, γ

$$\gamma = \frac{Weight}{Volume} = \frac{Mg}{V} \qquad (kN/m^3; lb/ft^3; g/cm^3)$$

3) **Dry Unit Weight**, γ_d

$$\gamma_{d} = \frac{Weight \ of \ soil \ solids}{Total \ Volume} = \frac{W_{s}}{V_{t}}$$

4) <u>Bulk Unit Weight</u>, γ_b

$$\gamma_{b} = \frac{Total \ Weight}{Total \ Volume} = \frac{W}{V_{t}}$$

5) Unit Weight of Soil Solids, γ_s

$$\gamma_s = \frac{Weight \ of \ soil \ soilds}{Volume \ of \ soil \ soilds} = \frac{W_s}{V_s}$$

WEIGHT RELATIONSHIPS

6) <u>Saturated Unit Weight</u>, γ_{sat}

 $\gamma_{sat} = \frac{Weight \ of \ saturated \ soil}{Total \ Volume}$

7) Submerged Unit Weight, γ_{sub} (or $\gamma_{bouyant}$)

$$\gamma_{sub} = \gamma_{sat} - \gamma_w$$

 $\gamma_w = 9.81 \text{ kN/m}^3 \rightarrow 1 \text{ g/cm}^3$

- $= 1000 \text{ kg/m}^3$
- $= 62.4 \text{ lb/ft}^3$

Archimede's principle:

The buoyant force on a body immersed in a fluid is equal to the weight of the fluid displaced by that object.

SPECIFIC GRAVITY (Gs)

$G_{s} = \frac{\text{Unit weight of soil soilds}}{\text{Unit weight of equal volume of water at } 4^{\circ}C} = \frac{\gamma_{s}}{\gamma_{w}}$

Generally for soils $2.6 \le Gs \le 2.7$

WEIGHT-VOLUME RELATIONSHIPS

 $\gamma_b = G_s \cdot \gamma_w \left(\frac{1+w}{1+e} \right)$

 $\gamma_{sub} = \frac{\gamma_w (G_s - 1)}{(1 + \rho)}$

 $\gamma_d = \frac{G_s \cdot \gamma_w}{1 \pm \rho}$

 $\theta_{v} = n.S_{r}$

 $n = 1 - \frac{W_s}{G_s \cdot \gamma_w} \bullet \frac{1}{V}$

 $e = \frac{W.G_s}{S}$

 $\gamma_{sat} = \frac{(G_s + e)\gamma_w}{1 + c}$

CONCLUDED