Geotechnical Engineering-I BSc Civil Engineering - $4^{\text {th }}$ Semester

Lecture \# 2

30-Jan-2015

by

Dr. Muhammad Irfan
Assistant Professor
Civil Engg. Dept. - UET Lahore
Email: mirfan1 @msn.com
Lecture Handouts: https://groups.google.com/d/forum/geotec-1

SOIL AS A THREE PHASE SYSTEM

S:	Solid	Soil particle
W:	Liquid	Water
A:	Air	Air

SOIL AS A THREE PHASE SYSTEM

$V=$ Total volume of soil mass
$V_{s}=$ Volume of soil solids
$V_{w}=$ Volume of water
$V_{a}=$ Volume of air
$V_{v}=V_{a}+V_{w}=$ Volume of voids
$W=$ Total weight of soil
$W_{s}=$ Weight of soil solids
$W_{a}=$ Weight of air ≈ 0
$W_{w}=$ Weight of water

VOLUMETRIC RATIOS

1) Void ratio, e

$$
\mathrm{e}=\frac{\text { Volume of } \operatorname{voids}\left(\mathrm{V}_{\mathrm{v}}\right)}{\text { Volume of } \operatorname{solids}\left(\mathrm{V}_{\mathrm{s}}\right)} \quad(0<e<\infty)
$$

For sands, $0.5 \leq e \leq 0.9$

For clays, $0.7 \leq e \leq 1.5$ (or even higher)

VOLUMETRIC RATIOS

2) Porosity, n

$$
\mathrm{n}=\frac{\text { Volume of voids }\left(\mathrm{V}_{\mathrm{v}}\right)}{\text { Total volume of soil sample }\left(\mathrm{V}_{\mathrm{t}}\right)}
$$

$(0<n<1)$
Typical range, 9-70\%
For sands, $25 \% \leq n \leq 50 \%$
3) Air Porosity, $\boldsymbol{n}_{\boldsymbol{a}}$,

$$
n_{a}^{\prime}=\frac{\text { Volume of air }\left(V_{a}\right)}{\text { Total volume of soil sample }\left(V_{t}\right)} \quad\left(0<n_{a}^{\prime}<1\right)
$$

4) Percentage Air Voids, $\boldsymbol{n}_{\boldsymbol{a}}$

$$
n_{a}=\frac{\text { Volume of } \operatorname{air}\left(V_{a}\right)}{\text { Volume of } \operatorname{voids}\left(V_{v}\right)}
$$

$$
\left(0<n_{a}<1\right)
$$

VOLUMETRIC RATIOS

5) Degree of Saturation/ Saturation Ratio, $S\left(\right.$ or $\left.S_{r}\right)$

$$
S=\frac{\text { Volume of voids containing water }\left(V_{w}\right)}{\text { Total volume of voids }\left(V_{v}\right)} \times 100 \%
$$

$$
\left(0<S_{r}<100 \%\right)
$$

6) Volumetric Water Content, $\boldsymbol{\theta} \boldsymbol{v}$

$$
\theta_{v}=\frac{\text { Volume of voids containing water }\left(V_{w}\right)}{\text { Total volume of soil sample }\left(V_{t}\right)} \quad\left(0<\theta_{v}<1\right)
$$

WEIGHT RELATIONSHIPS

1) Moisture/Water Content, w

$$
w=\frac{\text { Weight of } \operatorname{water}\left(W_{w}\right)}{\text { Weight of } \operatorname{soil} \operatorname{solids}\left(W_{s}\right)} \times 100 \%
$$

Typical value for Sands >> 10-30\%
For clays >> 10% or higher typically

For some organic soils $w>100 \%$, even up to 500%.
For quick clays w is typically > 100%.

WEIGHT RELATIONSHIPS

2) Unit Weight, γ

$$
\gamma=\frac{\text { Weight }}{\text { Volume }}=\frac{M g}{V} \quad\left(\mathrm{kN} / \mathrm{m}^{3} ; l b / \mathrm{ft}^{3} ; g / \mathrm{cm}^{3}\right)
$$

3) Dry Unit Weight, γ_{d}

$$
\gamma_{d}=\frac{\text { Weight of soil solids }}{\text { Total Volume }}=\frac{W_{s}}{V_{t}}
$$

4) Bulk Unit Weight, γ_{b}

$$
\gamma_{b}=\frac{\text { Total Weight }}{\text { Total Volume }}=\frac{W}{V_{t}}
$$

5) Unit Weight of Soil Solids, γ_{s}

$$
\gamma_{s}=\frac{\text { Weight of soil soilds }}{\text { Volume of soil soilds }}=\frac{W_{s}}{V_{s}}
$$

WEIGHT RELATIONSHIPS

6) Saturated Unit Weight, $\gamma_{\text {sat }}$

$$
\gamma_{\text {sat }}=\frac{\text { Weight of saturated soil }}{\text { Total Volume }}
$$

7) Submerged Unit Weight, $\gamma_{\text {sub }}\left(\right.$ or $\left.\gamma_{\text {bouyant }}\right)$

$$
\gamma_{s u b}=\gamma_{s a t}-\gamma_{w}
$$

$$
\begin{aligned}
\gamma_{w} & =9.81 \mathrm{kN} / \mathrm{m}^{3} \rightarrow 1 \mathrm{~g} / \mathrm{cm}^{3} \\
& =1000 \mathrm{~kg} / \mathrm{m}^{3} \\
& =62.4 \mathrm{lb} / \mathrm{ft}^{3}
\end{aligned}
$$

Archimede's principle:

The buoyant force on a body immersed in a fluid is equal to the weight of the fluid displaced by that object.

SPECIFIC GRAVITY (Gs)

$$
G_{s}=\frac{\text { Unit weight of soil soilds }}{\text { Unit weight of equal volume of water at } 4^{\circ} \mathrm{C}}=\frac{\gamma_{s}}{\gamma_{w}}
$$

Generally for soils $2.6 \leq G s \leq 2.7$

WEIGHT-VOLUME RELATIONSHIPS

$$
\begin{array}{lrl}
e=\frac{n}{1-n} & \gamma_{b}=G_{s} \cdot \gamma_{w}\left(\frac{1+w}{1+e}\right) & \\
n=\frac{e}{1+e} & \gamma_{s u b}=\frac{\gamma_{w}\left(G_{s}-1\right)}{(1+e)} \\
\gamma_{d}=\frac{\gamma_{b}}{1+w} & \gamma_{d}=\frac{G_{s} \cdot \gamma_{w}}{1+e} & \theta_{v}=n \cdot S_{r} \\
n=1-\frac{W_{s}}{G_{s} \cdot \gamma_{w}} \bullet \frac{1}{V} & e=\frac{w \cdot G_{s}}{S} & \\
e=\frac{V \cdot G_{s} \cdot \gamma_{w}}{W_{s}}-1 & \gamma_{s a t}=\frac{\left(G_{s}+e\right) \gamma_{w}}{1+e} &
\end{array}
$$

CONCLUDED

