

Geotechnical Engineering–I *BSc Civil Engineering* – 4th Semester

Lecture # 5 9-Feb-2015

by Dr. Muhammad Irfan Assistant Professor Civil Engg. Dept. – UET Lahore Email: mirfan1@msn.com Lecture Handouts: https://groups.google.com/d/forum/geotec-1

MECHANICAL ANALYSIS OF SOIL

Mechanical Analysis OR Particle Size Analysis OR Grain Size Distribution (GSD)

Why?

- To group soils with similar engineering properties.
- To predict soil behavior.

MECHANICAL ANALYSIS OF SOIL

Mechanical analysis is the determination of the size range of particles present in a soil, expressed as a percentage of the total dry weight.

Silt

Coarse-grained soils:

Gravel S

Sand

Fine-grained soils:

0.075 mm (USCS)

0.06 mm (BS)

Sieve Analysis

Clay

Hydrometer Analysis

SIEVE ANALYSIS

SIEVE ANALYSIS

76.2 mm

Gravel

4.75 mm

Sand

0.075 mm Silt and Clay Pan

USCS: Unified Soil Classification

BS: British Standard

Unit: mm

Fine Sand

SIEVE DESIGNATION – Larger

Sieves larger than the No. 4 sieve are designated by the *size of the openings in the sieve*.

Commonly used larger sieve sizes:

- 3 in.
- 2 in.
- 1.5 in.
- 1 in.
- 3/4 in.
- 1/2 in.
- 3/8 in.

SIEVE DESIGNATION – Smaller

US STANDARD SIEVE SIZES

Sieve No.	Opening (mm)	Sieve No.	Opening (mm)
3 inch	76.200	20	0.850
2 inch	50.800	25	0.710
1.5 inch	38.100	30	0.600
1 inch	25.400	35	0.500
3/4 inch	19.000	40	0.425
3/8 inch	9.520	50	0.355
➡ 4	4.750	60	0.250
5	4.000	70	0.212
6	3.350	80	0.180
7	2.800	100	0.150
8	2.360	120	0.125
10	2.000	140	0.106
12	1.700	170	0.090
14	1.400	➡ 200	0.075
16	1.180	270	0.053
18	1.000		

SIEVE ANALYSIS – Procedure

- Soil used in sieve analysis is oven-dried and all lumps are broken.
- A stack of sieves (*sieve nest*), with sieve opening of decreasing size from top to bottom, is arranged.
- A pan is placed below the stack.
- The soil is then shaken through this sieve nest.
- *Mass retained* on each sieve is determined.

Wet Sieving Technique

- -Breaking lumps in clayey soils may be difficult. If soils contain silts and clays, the wet sieving is usually used to preserve the fine content.
- In this case, the soil may be mixed with water to make a slurry and then washed through sieves.
- -Portions retained on each sieve are collected separately and oven-dried.

SIEVE ANALYSIS – Procedure

Finer (**Passing**) 100 % 76.2 mm Gravel Gravel 100 - 93 = 7%93 % 4.75 mm Sand Sand 93 - 62 = 31%62 % 0.075 mm Silt and Clay 62 - 0 = 62%Silt and Clay Pan 0 %

SIEVE ANALYSIS – Results (Gradation Curve)

Grain Diameter (mm)

SIEVE ANALYSIS – Calculations

Sieve No.	Diameter (mm)	Wt. of soil retained (gm)	Cumulative soil weight retained on each sieve (gm)	Cumulative percentage retained (%)	Cumulative percentage passing (%)
(Col. 1)	(Col. 2)	(Col. 3)	(Col. 4)	(Col. 5)	(Col. 6)

(Col. 4) = (Col. 3) + (Col. 4) of previous line

$$(Col. 5) = [(Col. 4)/Total wt.] x 100$$

(Col. 6) = 100 - (Col. 5)

SIEVE ANALYSIS – Example

U.S. sieve size		Mass of soil retained on each sieve (g)	
	4	0	
	10	40	
	20	60	
	40	89	
백란	60	140	
	80	122	
	100	210	
	200	56	
	Pan	12	

Following are the results of a sieve analysis. Make the necessary calculations and draw a particle-size distribution curve.

SIEVE ANALYSIS – Example

U.S. sieve (1)	Opening (mm) (2)	Mass retained on each sieve (g) (3)	Cumulative mass retained above each sieve (g) (4)	Percent finer ^e (5)
4.885	4,75	· · · · · · · · · · · · · · · · · · ·	0	100
10	2.00	40	0 + 40 = 40	94,5
20	0.850	60	40 + 60 = 100	86.3
40	0.425	89	100 + 89 = 189	74.1
60	0.250	140	189 + 140 = 329	54.9
80	0.180	122	329 + 122 = 451	38.1
100	0.150	210	451 + 210 = 661	9.3
200	0.075	56	661 + 56 = 717	1.7
Pan			$717 + 12 = 729 = \Sigma M$	0.

SIEVE ANALYSIS – Example

SOIL GRADATIONS

- Well graded soils
- Poorly graded soils
 - Uniformly graded soils
 - Gap graded soils

Well-graded soil

Poorly-graded (uniformly graded) soil

 $D_{10}, D_{30}, and D_{60}$ D_{10} = Diameter corresponding to 10% passing D_{30} = Diameter corresponding to 30% passing D_{60} = Diameter corresponding to 60% passing 60 **Percent passing** D_{50} = Diameter corresponding to 50% passing = Mean diameter of soil sample 30 10 **D**₁₀ D₆₀ D₃₀,

Grain Diameter

COEFFICIENTS OF GRADATION

Coefficient of Uniformity

$$C_{u} = \frac{D_{60}}{D_{10}}$$

Coefficient of Curvature

$$C_{c} = \frac{D_{30}^{2}}{\left(D_{60} \times D_{10}\right)}$$

For a well-graded soils

 $1 \le C_c \le 3$ and $C_u \ge 4 \text{ (for gravels)}$ $C_u \ge 6 \text{ (for sands)}$

POINT TO PONDER!!!

What is the C_u for a soil with only one grain size?

C_u of Uniformly Graded Soil

$$C_u = \frac{D_{60}}{D_{10}} = 1$$

Grain Size Distribution

D

Grain-size distribution curve

CONCLUDED