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1: Strength: The ability of structure to support a specified 

load without experiencing excessive load. 

2: Deformation: The ability of structure to support a 

specified load without undergoing appreciable deformation. 

3: Stability: The ability of structure or structural member to 

support a given load without experiencing a sudden change in 

its configuration (Buckling). 

DESIGN CONSIDERATION OF STRUCTURE 

We define instability instead of stability 

 Change in geometry of a structure or structural component 

under compression , resulting in loss of ability to resist 

loading is defined as instability. 
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Structure is in unstable equilibrium when small perturbations 

(disturbance) produce large movements and the structure 

never returns to its original equilibrium position. 

Structure is in neutral equilibrium when we cant decide 

whether it is in stable or unstable equilibrium. Small 

perturbation cause large movements  but the structure can be 

brought back to its original equilibrium position with no 

work.  

Thus, stability talks about the equilibrium state of the 

structure.  

Neutral Equilibrium  Stable Equilibrium  Unstable Equilibrium  
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The definition of stability had nothing to do with a change in 

the geometry of the structure under compression. 

Change in geometry of structure under compression that 

results in its ability to resist loads called instability. 

Not true :this is called buckling. 

Buckling is a phenomenon that can occur for structures under 

compressive loads.  

Stability of equilibrium:  

As the loads acting on the structure are increased, when does 

the equilibrium state become unstable? 

The equilibrium state becomes unstable due to:  

 Large deformations of the structure 

 Inelasticity of the structural materials 
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COLUMN 

A column is a line element (long slender bar) subjected to 

axial compression. The term is frequently used to describe a 

vertical member. 

Structural members (i.e., columns) are generally stable when 

subjected to tensile loading and fail when the stress in the 

cross section exceeds the ultimate strength of material. 

In case of elements (i.e., column) subjected to the 

compressive loading, secondary bending effect e.g., 

imperfections within material and/or fabrication process, 

inaccurate positioning of loads or asymmetry of cross 

section can induce premature failure either in part of cross 

section or of the whole element. In such case failure mode is 

normally the Buckling. 
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Buckling is categorized into the following 
1. Overall buckling 

2. Local buckling 

3. Lateral Torsional buckling 

The design of the most of the compressive members is 

governed by over-all buckling capacity. i.e., the maximum 

compressive load which can be carried  before the failure 

occurs due to the excessive deflection in the plane of greatest 

slenderness ratio. 

Typical overall buckling occur in columns of frame structure 

and in compression members of trusses 
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SLENDERNESS RATIO (Le /rmin) 

It is the ratio of the effective length of column (Le) to the 

minimum radius of gyration (rmin) of cross sectional area. 

If the columns is free to rotate at each end then buckling 

takes place about that axes for which the radius of gyration is 

minimum. 

TYPES OF THE COLUMNS 

The compression elements (Columns) are sub-divided into the 

following three categories. 

1. Short Column 

The column which has a relatively low slenderness ratio is 

called the short column (e.g., length of not greater than the 10 

time to the least cross sectional dimension). 

Failure occur when stress over the cross section reaches the 

yield or crushing value of the material. 
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Such element fail by crushing of material induced by 

predominantly axial compressive stress (flexure stresses are 

not dominant). 

2. Slender Column 

The column which has a relatively high slenderness ratio is 

called the slender or long column (e.g., length is greater than 

the 30 time to the least cross sectional dimension). 

Such element fail due to excessive lateral deflection (i.e., 

buckling) at a value of stress considerably less than the yield 

or crushing value. 

In slender column flexure stress are dominant and 

compressive stress are not too important. 

3. Intermediate Column 

The failure of columns is neither short nor slender and occur 

due the combination buckling and yielding/crushing. 
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For Intermediate column Length is in between  10 to 30 time 

to the least cross sectional dimension. 

Ideal Column 

An ideal column has the following properties. 

1. Its is prismatic (having the constant cross section through 

out the length). 

2. Material is homogeneous. 

3. Loading is perfectly axial. 

4. Pin ended condition (simply supported) are frictionless. 

Real Column 

1. Imperfection are present (i.e., structural and geometric) 

2. Its not perfectly prismatic 

3. Centroid may not lie on line joining the centroid of the end 

section. 

4. Load is not acting along the centroidal line.  
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Actual 

center line 

Theoretical 

center line 

ep et 

P 

e = Total eccentricity 

et = Theoretical eccentricity 

ep = Loading eccentricity 

Z = section Modulus 
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Stress in Eccentric Column 
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CRITICAL LOAD OF COLUMNS 

The critical load of as slender bar (columns) subjected to axial 

compression is that value of the axial load that is just sufficient 

to keep the bar  a slightly deflected configuration. 

P < Pcr 

P < Pcr 

P = Pcr 

P = Pcr 

d 

P > Pcr 

P > Pcr 

Case-I: P < Pcr 

 Stable Equilibrium and No Buckling 

Case-II: P = Pcr 

 Equilibrium State and Slight deflection 

Case-III: P > Pcr 

 Unstable State and  Buckling 
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In 1759 a Swiss mathematician Leonhard Euler developed a 

theoretical analysis of premature failure due to buckling. 

Let suppose a pin ended 

column AB of length L is 

subjected to a slight 

bending. Since column can 

be considered a beam 

placed in vertical direction 

and subjected to axial load, 

thus deformation at any 

point of column can be 

represented by equation of 

elastic curve. 
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)1(
2

2

M
dx

yd
EI 

Here in figure, bending moment at 

point Q having co-ordinate (x , y) 

can be represent as given in Eqn. 

(2). The negative sign indicate the 

negative bending moment. 
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Eqn. (5) represent a second order Homogeneous Differential 

Equation for simple harmonic motion and general solution 

of the equation is given as Eqn. (6) 
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Coefficient C & D can be determined by applying the 
boundary condition. 

In Eqn. (6) either A = 0 or sinkL=0. if A = 0 it will be zero 
everywhere along the column and we will have a trivial 
solution (member will be straight for any loading) the only 

At End A:  x = 0 & y = 0 At End B:  x = L & y = 0 

0
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To satisfy the Eqn. (8) 

n = 1, 2, 3, …. 
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n values of 1, 2, 3, represent the buckling 

shape (eigenvalue) corresponding to 1st, 

2nd and 3rd buckling mode shape, 

respectively. 

The smallest (critical) value load, Pcr 

occurs when n = 1, which corresponding 

to first (least) buckling mode. 

)11(
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2

L

EI
Pcr




The Eqn. (11) is called the Euler formula and deflection 
corresponding to this load is  

)12(sinsin)6( x
EI

P
CkxCy cr



16 By Dr. Nauman KHURRAM Department of Civil Engineering, UET Lahore 

Substituting the value of Pcr from Eqn. (11) 
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Eqn. (13) represents the equation of elastic curve after the 
column has been buckled. From the equation (13) deflection 
will be  maximum when  
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L

x
If m  )13(1sin



Above solution is indeterminate this is due to the fact that 

differential Eqn. (2) used is the linearized approximation of 

actual differential equation. 

If P < Pcr the condition sin( 𝜋𝑥/𝐿) = 0 cannot be satisfied then 

we must have C = 0 as only in this case configuration of 

column will be straight, which is stable condition. 
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INFLUENCE OF END CONDITION 

Effective Length (Le) 

It is the length of the column corresponding to the half sigh 

wave or length between the point of contra-flexure.  

The Euler critical load for fundamental buckling mode 

depends upon the effective length. 

Effective Length Factor (K) 

It is the ratio between the effective length and original length 

 

 

 

 

The Factor K depends upon the end/boundary Condition of 

the column 
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Effect of K-factor on Critical Buckling  Load 
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Critical Stress (σcr ) 

It is the stress corresponding to the Euler Critical Load and can 

be calculated as following.  

 

 

 

Critical Stress (σcr ) for Slender Column 

The critical stress for slender columns may be fixed by 

dividing proportional or yield stress by factor of safety and 

corresponding limiting slenderness ratio can be determined by 

using the Eqn. (14). 
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Alternatively 

For slender columns, Length > 30(least X-sectional dimension) 

Assuming a rectangular cross-section of bxh. 

103
32/

30

min


b

b

r

Le MPacr 200
)100(

10200
2

32









100
min


r

L
Let e

Critical Stress (σcr ) for Short Column 

For Short columns critical stress is taken equal to the crushing or 

yield stress and slenderness ratio may be fixed by considering 

the, Length = 10 (least X-sectional dimension) 
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EXAMPLE PROBLEM 

A steel bar of rectangular cross section of 40x60 mm2 and 

pinned at the both ends is subjected to axial compression. If 

proportional limit of material is 230 MPa and E =200 GPa. 

a) Determine the maximum length for which the Euler 

Equation may be used to calculate the buckling load. 

b) For the same column determine the Euler Buckling load if 

length of the column is equal to 2m. 

Data 

Area = bxh = 40x60 mm2 

σPl = 230 MPa , E = 200 GPa , L = ? 

b) Pcr = ? If  L = 2 m 
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Example 10.01 (Bear & Johnston 6th Ed.) 

A 2.0 m long pin-ended column of square cross section is to be 

made of wood. Assuming E =13 GPa, σall = 12 MPa, and using 

a factor of safety of 2.5 in computing Euler’s critical load for 

buckling, determine the size of the cross section if the column 

is to safely support. 

a) A 100 kN load 

b) A 200 kN load 

Data 

σall = 12 MPa , E = 13 GPa 

F.O.S. = 2.5 

L = 2.0 m 

Size of square column, b = ? 
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σcr FOR INTERMEDIATE COLUMNS 

Tangent Modulus Theorem (Inelastic Buckling) 

By this method a modified version of Euler equation is adopted 

to determine the stress-slenderness relationship in which the 

value of the modulus of elasticity at any given level.  

Consider  a column manufactured from the a material, whose 

stress-strain curve is shown in the figure below. 

The slope of the tangent to the 

stress-strain curve at any stress 

value σ (σ is greater than σPl and is 

within the inelastic range) is equal 

to the value of Tangent Modulus of 

Elasticity, Et.  

Et is different from the E which is 

the value at Elastic limit. 
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The value of Et can be used is Euler equation to calculate 

the modified slenderness corresponding to any successive 

value of σ.  

The curve for to intermediate column can be plotted by 

obtaining the slenderness value corresponding the any 

successive stress value (σ = σcr)  ranging between than σPl 

and σult or crushing value . 
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Although, the nonlinearity of the stress-strain diagram 

beyond the proportional limit is considered in Eqn. (15), its 

theoretical basis is somewhat weak. Therefore, this equation 

should be viewed as an empirical formula. However, the 

results obtained from Equation are in satisfactory agreement 

with experimental results.  
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Insignificant zone of 

Euler Equation 
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Rankin-Gordon Formula 
Euler formula is only suitable for the slender columns with 
small imperfections. In practice, most of the intermediate 
columns fail due to the combined effect of compression and 
flexure and experimentally obtained results are much less than 
the Euler prediction. 

Gordon suggested an empirical formula based on the 
experimental results to predict the load of intermediate 
columns, which was further modified by Rankin. 

According to Rankin intermediate columns/members fail due 
to buckling and compression to more or less degree and load 
carrying capacity of such member can be calculated as 
following. 
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In Eqn. (16) 

PR = Rankin – Gordon buckling load 

Pe = Euler buckling Load 

Pc = Ultimate compressive load  AorAP
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a = Rankin constant, which 

depends upon the boundary 

condition and material  properties  
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Material σy (MPa) Rankin constant, a 

Mild Steel 325 1 / 7500 

Wrought Iron 250 1 / 9000 

Cast Iron 560 1 / 1600 

Timber 35 1 / 3000 

Rankin constant for various Materials 

Graphical Presentation of Rankin Formula 
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Example Problem  

A cast Iron column of 200 mm external diameter is 20 mm 

thick and 4.5 m long. Assuming the both  end rigidly fixed, 

calculate the safe load using Rankin Formula if Rankin 

constant, a = 1 / 1600, σy = 550 MPa  F.O.S. = 4.0. 

Data 

σy = 550 MPa ,  F.O.S. = 4.0 

Do = 200.0 mm  K = 0.5 ( both Ends fixed) 

t = 20 mm   a = 1 / 1600 

Psafe = PR / FOS 
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Practice Problem  

For the given data determine the length of the Column for 

which Euler formula cease to apply. 

Data 

σy = 325 MPa ,  E = 200 GPa 

Do = 38.0 mm  L = 2.25 m 

Di = 33.0 mm   K = 1.0 ( both Ends pinned) 

a = 1 / 7500 
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AISC SPECIFICATIONS FOR STEEL COLUMNS 

American Institute of Steel Construction (AISC) specifies two 

method for the computation of the compressive strength of the 

columns. Both design specification bound the maximum 

slenderness ratio equal to 200. 

1. Allowable stress design (ASD) 

2. Load and Resistance Factor Design (LRFD) 

1.0 Allowable stress design (ASD) 

It is the old method and according to this method columns 

made of structural steel can be designed on the basis of 

formulas proposed by the Structural Stability Research 

Council (SSRC). Factors of safety are applied to these 

formulas. 
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It consider only intermediate (short) and long column and 

there is no straight portion between the stress~slenderness 

ratio curve. A specific slenderness ratio value Rc is used to 

differentiate between the slender and intermediate (or short) 

column. 

Experimental studies showed that compressive residual 

stresses can exist in rolled-formed steel sections their 

magnitude may be as much as one-half the yield stress. 

Consequently, if the stress in the Euler formula is greater σy 

/2 then equation is not valid. Thus, limiting slenderness 

ratio Rc for the long columns can be determined by putting 

the σcr = σy /2 in Euler Equation.  
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Short Column 
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The short column are designed on the base of an empirical 

formula which is parabolic in form and maximum stress by 

this formula is given as following. 

Slender Column 
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In long column allowable stress can be calculated through 

the Euler equation divided by the Factor of safety. 
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FOS becomes 5/3 or 1.67 when 

Le /r = 0 and increases to 1.92 or 

23/12 at slenderness value equal 

to Rc. 

All the above equation may be 

used both in SI and FPS 

System. 
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Example Problem  

Determine the allowable axial load (Pallow) for a W310x129 

wide-flange steel column with both end pinned, for the 

following lengths. 

(a) L = 6 m  (b) L = 9 m 

Assume E = 200 GPa and  σy = 340 MPa  

 
Data 

For W310x129 Section 

A= 16,500 mm2  σy = 340 MPa 

rz = ry = 78.0 mm  E = 200 GPa 

K = 1.0 ( both Ends pinned) 



ECCENTRICALLY LOADED COLUMN  

(SECANT FORMULA) 
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In practice it is difficult to apply the end thrust (axial load) 

along the longitudinal centroidal axes of columns. In such case 

we have to consider the effect of eccentrically applied load “P” 

on a prismatic column of flexural stiffness EI. 
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Suppose axial load is acting at  an 

eccentricity “e” from the weaker 

axes (y-axis) the equation of elastic 

curve and moment at any arbitrary 

point Q can be given in Eqn. (23). 
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The complete solution of Eqn. (25) is given as following 
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Coefficient C & D can be determined by applying the 
boundary condition. 

At End A:  x = 0 & y = 0 

At End B:  x = L & y = 0 
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The Eqn. (27) represents the equation of deflection (y) at any 

point (x) along the columns. The value of maximum deflection 

(ymax) can be calculated by setting x = L /2. 
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In actual cases deflection  does not become infinite even the 

load exceed the elastic limits also P should not be reached to 

the Pcr (Euler critical load) 
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The maximum stress σmax occurs in the section 

of the column where the bending moment is 

maximum, i.e., in the transverse section 

through the midpoint C, and can be obtained 

by adding the normal stresses due to the axial 

force and the bending couple exerted on that 

section 
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The Eqn. (33) can be used for any end condition as long as 
the appropriate (K) value is used to calculate Pcr. 

Since σmax does not vary linearly with load  P, the principal 
of superposition is not applicable to determine the stress due 
to the simultaneously  application of applied loads. 

For the same reason any factor of safety should be used with 
load not the stress. 
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If the material properties, the dimensions of the column, and 

the eccentricity e are known then we have two variables in 

the secant formula: P and σmax. If P is also given, σmax can be 

computed from the formula without difficulty. 

  On the other hand, if σmax is specified, the determination of 

P is considerably more complicated because Eqn. (33), 

being nonlinear in P, must be solved by trial-and-error.  

 The secant formula is chiefly useful for intermediate 

values of Le /r. However, to use it effectively, we should 

know the value of the eccentricity e of the loading 

The formula given in Eqn. (33)  is referred to as the secant 

formula; it defines the force per unit area (P/A), that causes a 

specified maximum stress (σmax) in a column of given 

effective slenderness ratio (Le /r), for a given value of the 

eccentricity ratio (ec/r2). 
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Due to imperfections in manufacturing or specific 
application of the load, a column will never suddenly 
buckle; instead, it begins to bend. 

The load applied to a column is related to its deflection 
in a nonlinear manner, and so the principle of 
superposition does not apply. 

  As the slenderness ratio increases, eccentrically loaded 
columns tend to fail at or near the Euler buckling load. 
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Exercise: Plot the load-displacement curves of a rectangular column 

for the given data with eccentricity ranging from 5-25 mm. 

Data 

L= 2.5 m K = 1.0, A = 30x60 mm2,    e = 5 – 25 mm 

 
Solution  Imin= 60x303/12= 135,000 mm4 ,  rmin = 8.66 mm 
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Problem 10.34 (Mech. of Materials, Bear & Johnston, 6th Ed) 

The axial load P is applied at a point located on the x-axis at a 

distance e from the geometric axis of the rolled-steel column BC. 

When P = 350 kN, the horizontal deflection of the top of the 

column is 5 mm. Using E =200 GPa. determine 

(a) the eccentricity e of the load,  

(b) the maximum stress in the column. 

Data 

For W250x58 Section 

A= 7420 mm2 Sy = 185x103 mm3 

Ix = 8700x104 mm4,  rx = 108 mm 

Iy = 1870x104 mm4,  ry = 50.3 mm 

E = 200 GPa, d = 250 mm, bf =203 mm  

K = 2.0 (cantilever case) 
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Sample Problem 10.3 

(Mech. of Materials, A Pytel, 2nd Ed) 

A W14x61 section is used as a simply supported column of 25 ft 

long. When the 150-kip load is applied with the 4-in. eccentricity 

shown, Determine 

(1) the maximum compressive stress in the column;  

(2) the factor of safety against yielding; and  

(3) The maximum lateral deflection.  

Assume that the column does not buckle about the y-axis.  

Use E = 29x106 psi and σy = 36x103 psi.. 

For W250x58 Section 

A= 17.9 in2   Iz = 640 in4 ,  

Sz = 92.1 mm   e = 4 in ,   
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Problem 13.53 

(Mech. of Materials by RC Hibbler, 8th Ed) 

The W200x22, A-36-steel column is fixed at 

its base. Its top is constrained to rotate about 

the y–y axis and free to move along the y–y 

axis. Also, the column is braced along the x–x 

axis at its mid-height. Determine the 

allowable eccentric force P that can be 

applied without causing the column either to 

buckle or yield. Use against buckling F.O.S. = 

2.0 and F.O.S. = 1.5 against yielding. 

For W250x58 Section 

A= 28600 mm2 Ix = 20x106 mm4,  rx = 83.6 mm  

e = 100 mm ,  Iy = 1.42x106 mm4,  ry = 22.3 mm  

d = 200 mm,   bf =102 mm ,   E = 200 GPa  



INITIALLY CURVED COLUMN  

(PERRY - ROBERTSON FORMULA) 
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In practice a column cannot be made perfectly straight and 

Pcr  is never reached. Consideration of small deviation from 

the straight configuration makes the analysis more realistic. 

According to Perry-Robertson Formula, all practical 

imperfections (e.g. properties of the real columns) could be 

represented by a hypothetical initial curvature (a0) of 

column. 

Let consider a columns AB of length L has an initial 

imperfection y0 prior to the application of the and y is the 

additional deformation due to the applied load P. the equation 

of the elastic curve for any arbitrary point Q can be represented 

as following. 
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is represented by the sinusoidal curve 



53 By Dr. Nauman KHURRAM Department of Civil Engineering, UET Lahore 

The complete solution of Eqn. (38) is given as following 
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Applying the boundary condition 

At End A:  x = 0 & y = 0 At End B:  x = L & y = 0 
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Assuming k any non-zero value (as deflection will always be 

due to some applied load P) we must have C = 0 
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Substituting the values of C and D in Eqn. (39)  
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For pin ended column the deflection is maximum (ym) at 
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In Eqn. (41) & (42) y and ym are the additional deflection due 
to the applied P as compared to the initial deflection a0. 
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Using Eqn. (42)  

Load-deflection Curve of initially 
curved column 

The relationship of P and ym as shown in the figure depicts 

that the initially deformed columns fails before reaching the 

Pcr (Euler critical load) and ym increases rapidly with the 

increase of load P. 

At any definite displacement before the failure the Eqn. (42) 

be written as following. 
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The values of ym /P and ym are plotted from a column test 
then these variables can be related by a straight line. 

While plotting initial values may be discarded (40% to 80% 
data may be plotted). 

This plot is called the South-well plot and it is used to 
determine the initial deflection of a column, experimentally. 
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Total deflection at any distance x is given as 
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The maximum stress σmax occurs in the section of the column 

where the bending moment or displacement is maximum. 
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If applied load P is given the 

maximum stress can be 

determined by using the Eqn. (47) 
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If σmax are specified then to determine the safe applied load 

the Eqn. (47) is to transformed in term of applied stress σ.  
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We need not to consider  positive square root since we are only 

interested in smaller values of square roots in the Eqn. (48). 

This equation represents the average value of stress in the cross-

section at which the maximum stress would be attained at mid-

height of the column for any given value of η. 
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To determine the average applied stress (σ) at which yield 

occurs then σmax is replaces by the σy.  
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Experimental evidence obtained by Perry and Robertson 
indicated that for a mild steel the hypothetical initial curvature 
of the column could be represented as following. 
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It is that value of slenderness ratio when the yield stress is 

first attained in one of the extreme fibres. 
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