## 



# Lecture 10 - Water Distribution System 

Engr. Gul-E-Hina
Institute of Environmental Engineering \& Research(IEER)
University of Engineering and Technology, Lahore

## Water Distribution System

## Components

- Pipes
- Fire Hydrants
- Valves

- Service Reservoirs (OHR)


## Water Distribution System

## Types of Water Distribution System

1- Gravity distribution

- Natural slope, spring at peak
- Economical \& easy to install
- Site specific not applicable in all scenario
- For fire protection we generally install pumps



## Water Distribution System

## 2- Direct Pumping

- High electricity cost
- Operator role important (Constant attendance)
- Power /tube well or fire breakdown problem
- Pressure variation
- Pumps are design at peak hourly flow
- Several pumps to deal varying demand
- No storage


## Water Distribution System

## 3- Pumping with Storage

- Excess water pumped during periods of low consumption stored in OHR
- High consumption periods water drawn out to augment pumped water
- Constant pumping rate
- Economical as pumping rate is set at maximum daily instead of peak hourly flow
- More reliable due to fire fighting reserve


## Water Distribution System

## Pumping with storage



SANDEC 25.895

## Water Distribution System

## - Types of Layout

## Dead End or Tree System

- Irregularly developed cities(No proper plann Advantages

1. Easy to design
2. Less valve to cut off supplies

## Disadvantages

1. Stagnation of water at dead ends
2. Large portions of cities for repairs to be cu


## Dead End or Tree System

## Water Distribution System

## Grid -Iron System

- No stagnation
- More valves(costly)
- Difficult to design
- Expensive option but more reliable
- More common in developed countries

(10): Main Pipe
(B): Branch
(S): Sub Mains
- : Cut off Valves


## Water Distribution System

- Types of water supply


## Continuous

- No infiltration
- More water use


## Intermittent

- Infiltration/Seepage (more chance of contamination)
- Storing water in dirty containers
- Taps carelessly kept open
- Consumers waste stored water to get fresh water


## Water Distribution System

## Pipe Distribution System



Secondary

Tertiary

## Water Distribution System

## Primary Feeders

- Main skeleton
- Water pumping to OHR and various parts of city
- In cities form loops, about 1 km apart.
- Looping allows continuous flow and adequate fire flows.
- Provided with air relief valve \& blow off valve
- Size >300mm $\phi$


## Water Distribution System

## Secondary feeder

- Carry water from Primary feeder to cater for normal supplies +firefighting(12"- Lahore)
- Smaller loops within loops of primary feeder
- In cities these are few blocks apart
- Sizes are $200 \mathrm{~mm}, 250,300 \mathrm{~mm} \phi$


## Small distribution mains/Tertiary Feeder

- Form grid over areas and supply water to fire hydrant and domestic supply lines ( $150 \mathrm{~mm} \phi$ )
Domestic supply lines
- Generally the sizes are $<100-150 \mathrm{~mm} \phi$ normal size is 75 mm


## Water Distribution System

## Consideration Pipe Layout

1. Right of way: Should not intersect private property
2. Not on mines/ military remains
3. Not to damage existing infrastructure(telephone lines, sewerage pipes.
4. For high points use air release valves and low points blow off valve
5. Avoid point of inflection "Concrete blocks at point of inflection(Thrust blocks)"
6. When crossing river/stream better to attach with bridge or if passing through stream keep narrowest section when in need to bury pipes

## Water Distribution System



## TYPICAL THRUST BLOCK

## Laying of Distribution System

## Excavation

- Min depth : $\mathbf{1} \mathbf{m}$ to protect the pipe against traffic load
- Trench width: Sufficient width be provided for proper laying \& jointing of pipes.

| Pipe | Trench width |
| :---: | :---: |
| $2^{\prime \prime}$ | $1.5^{\prime}$ |
| $3^{\prime \prime}$ | $2^{\prime}$ |
| $4 \prime \prime$ | $2^{\prime}$ |
| $6 \prime \prime$ | $2^{\prime}$ |

## Laying of Distribution System

## Laying \& Jointing

- This include removal of pipes from vehicle, conveying it to the storage in a yard or at street, placing it in a trench and making proper joints.


## Thrust blocks

- PCC blocks are provided at all tees, bends \& dead ends to nullify water thrust


## Back Filling

- Back filling material should be free from large stones.


## Over Head Reservoir (OHT)



## Terminologies

## Yield

The portion of precipitation on the watershed that can be collected for use.

## Safe Yield

It is the minimum yield recorded for given past period.

## Draft

It is the intended or actually quantity of water drawn for use.

## Capacity of Overhead Reservoir

## Objective of Storage

1. Uniform or desired pumping rate of water over a given time
2. Equalize demand over a period of high use or when pumping discontinued
3. Emergency Services

- Fire Demand
- Tube well changes
- Electrical breakdown


## Capacity of Overhead Reservoir

- Storage capacity= Equalizing storage(15-30\% Max daily demand) + Fire Fighting (2-10hrs) + Emergency (Variable)
- Public Health engineering Department (PHED) recommended storage capacities for

1. Electric pumps $-1 / 6$ th of avg. daily consumption
2. Diesel Pumps $-1 / 4$ th of avg. daily consumption

## Determination of Required Storage

## Mass Diagram

- Graphical representation for finding the storage in reservoir.
-Also called Ripple diagram
- Mass diagram present the accumulated total discharge as a function of time.
-For mass diagram records of stream flow for substantial period of time is required generally more than $\mathbf{3 0}$ years.


## Determination of Required Storage



## Determination of Required Storage

Problem 1: From the following record of average monthly stream flows:

| Month | Flow $\left(m^{3} \times 10^{6}\right)$ | Month | Flow(m $\left.{ }^{3} \times 10^{6}\right)$ | Month | Flow <br> $\left(\mathrm{m}^{3} \times 10^{6}\right)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0.18 | 8 | 0.08 | 15 | 1.01 |
| 2 | 1.02 | 9 | 0.07 |  |  |
| 3 | 1.32 | 10 | 0.04 |  |  |
| 4 | 0.51 | 11 | 0.1 |  |  |
| 5 | 0.87 | 12 | 0.26 |  |  |
| 6 | 0.67 | 13 | 0.2 |  |  |
| 7 | 0.19 | 14 | 1.10 |  |  |

Determine the require reservoir size to provide a uniform flow(draft) of $11000 \mathrm{~m}^{3} /$ day

## Determination of Required Storage



## Determination of Required Storage

Design the storage reservoir for a constant outflow rate of 8055 gallons for the following data:

| Sr.No <br> $\cdot$ | Time <br> $(\mathrm{hr})$ | Flow <br> $(\mathrm{gal} / \mathrm{min})$ | Sr.N <br> o. | Time <br> $(\mathrm{hr})$ | Flow <br> $(\mathrm{gal} / \mathrm{min})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 8 | 50 | 92 | 14 | 9 |
| 2 | 9 | 230 | 15 | 10 | 200 |
| 3 | 10 | 310 | 16 | 11 | 80 |
| 4 | 11 | 270 | 17 | 12 | 60 |
| 5 | 12 | 140 | 18 | 1 | 70 |
| 6 | 1 | 90 | 19 | 2 | 55 |
| 7 | 2 | 110 | 20 | 3 | 40 |
| 8 | 3 | 80 | 21 | 4 | 70 |
| 9 | 4 | 150 | 22 | 5 | 75 |
| 10 | 5 | 230 | 23 | 6 | 45 |
| 11 | 6 | 305 | 24 | 7 | 55 |
| 12 | 7 | 380 |  |  | 35 |
| 13 | 8 |  |  |  |  |

## Types of Water Supply Pipes

## Water Supply Pipes

- Various types of pipes are available for the construction of water supply network.
- The following points should be considered for selection;
$>$ Carrying capacity
$>$ Durability
$>$ First cost
$>$ Maintenance cost
$>$ Type of water to be conveyed


## Water Supply Pipes

1. Cast Iron Pipes:

Most widely used for city water supply
Average life of pipes 100 years
Corrosion (tuberculation)may reduce its capacity by $70 \%$, must be lined with cement or bitumen

- Roughness coefficient (C)for new pipe is 130
- Roughness coefficient (C) for old pipe is 100



## Water Supply Pipes

## 2. Steel Pipes:

Contains less carbon than cast iron pipe Average life is $\mathbf{2 5 - 5 0}$ years
Frequently used for trunk mains
Difficult to make connections, hence seldom used for water distribution

- Much stronger and lighter than cast iron pipes
- Cheaper than cast iron pipes

Cannot withstand vacuum, hence collapse
Highly susceptible to corrosion, hence high maintenance charges required.


## Water Supply Pipes

## 3. Ductile Pipes:

Similar to C.I pipes except their increased ductility (it is the property of a metal of being capable to be drawn out into wire)
Ductile iron is produced by adding a controlled amount of Mg into molten iron of low sulphur and phosphorus content

- Stronger, tougher and more elastic than C.I More expensive than C.I



## Water Supply Pipes

## 4. Galvanized Iron Pipes:

- Produced by dipping C.I pipes in molten zinc
- Resistant to corrosion
- Mainly used for plumbing
- Maximum diameter 6 inches

5. Concrete Pipes:


Usual size of RCC pipes 400 mm and above Not subjected to corrosion

- Manufactured at or near site Average life of pipe is 75 years
Roughness coefficient is between 138 to 15



## Water Supply Pipes

6. Asbestos Cement Pipes:

- Sizes available between $100 \mathrm{~mm}-600 \mathrm{~mm}$
- Average life - 30 years
- Immune to actions of acids, salts, soil, corrosion
- Less pumping cost due to less friction
- Roughness coefficient is equal to 140


7. Poly vinyl chloride Pipes:

- Mainly used for domestic plumbing
- Easy to install , easy to handle
- Cheaper in material cost
- Weak to sustain load
- Only available up to 350 mm diameter size
- Expected life - 25 years
- PVC becomes brittle when placed in sunlight


## Water Supply Pipes

## 8. POLYPROPYLENE RANDOM COPOLYMER

 (PPRC)- Exceptional corrosion \& erosion resistance
- Anti-Fungal \& Non-toxic
- Inherited characteristic of high impact strength
- Wide Temperature range: $-\mathbf{4}^{0} \mathrm{C}$ to $+95^{0} \mathrm{C}$ (suitable for both hot \& cold applications)
- Long Service life, above 50 years over a wide temperature range.
- Highly economical as compared to G. I , C. I, M.S, PVC
- Superior Impact, Fracture Resistance \& Minimum Crack Transmission due to Co-polymer with random assortment.
- PPR-C being an Eco-Friendly product does not catches fire straightforwardly, indeed in case of fire it



## Types of Valves

## 1.Gate Valve(sluice valve)

- Used to shut off water supply mains for repair
- Generally placed at street corners where lines intersect.


## 2.Global Valve

- Used in the plumbing system on smaller pipes.
- They create lot of head loss



## Types of Valves

## 3.Check Valve

Uni-directional flow
Discharge side of pump to reduce water hammer effect (pumping stations)

## 4.Butterfly Valve



Used in filter plants and high pressure distribution systems. Shut off very slowly to avoid water hammer.

## Types of Valves

## 5.Pressure Regulating Valve

- Reduce pressure downstream side to any desired magnitude(60 PSI)
- Spring and adjustable diaphragm in order to increase or decrease the water pressure within the water supply service



## Types of Valves

## 6. Air Relief Valve

- It allows the accumulated air in the pipe to escape
- It also allows the external air to enter the pipe to break the vacuum.
- Placed at high points of the line


liquid causes poppet to rise; air under pressure still flows out

as liquid continues to rise, poppet seals against orifice



## Types of Valves

7. Blow off Valve

- Used to drain a line, or to remove accumulated sediments
- Located at low points.

(1) Vacuum / Boost from intake manifold

Pressure from intake system
Recirculated or atmosphere venting

## Types of Valves

## 8. Altitude Valve

- Close automatically a supply line to an elevated tank when full
- Differential in forces between a spring load and the water level in the reservoir.
- When the force of the spring is overcome by the force of the reservoir head, the pilot closes the main valve
- Desired high water level set by adjusting the spring force



## Fire hydrants

- At least 2 hose outlets and larger pumper outlet Located at street intersection 1-2 m from the edge of road


