

Geotechnical Engineering–I *BSc Civil Engineering – 4th Semester*

Lecture # 10 27-Feb-2015

by Dr. Muhammad Irfan Assistant Professor Civil Engg. Dept. – UET Lahore Email: mirfan1@msn.com Lecture Handouts: https://groups.google.com/d/forum/geotec-1

"SOIL" as Construction Material

Soil is essential construction material of most construction projects:

- Retaining walls, Embankments,
- Highways,
- Airports,
- *Dams*, *Dikes*, etc.

Advantages of using soil:

- Easy *availability*
- Durable, and long-lasting
- Low *cost*

"SOIL" as Construction Material

Typical soils at *in-situ state*

- weak, highly compressible, or have high permeability
 - *Not ideal* for construction projects

Improvement of engineering properties (soil stabilization) is required;

- Mechanical stabilization
 Compaction
- Chemical stabilization

In most civil engineering projects, whenever soils are imported or excavated and re-applied, they are compacted.

COMPACTION

Ground improvement technique in which soil is *densified* through external *compactive effort*.

Measurement of Compaction

 \rightarrow in terms of *dry unit weight*, γ_d

COMPACTION

Soil densification by applying *mechanical energy* to reduce *air voids*

reduces air content, but *not the water* content can't compact saturated soil (almost always true)

BENEFITS OF COMPACTION

- *Soil strength* \rightarrow Increase
 - Bearing capacity
 - Slope stability, etc
- *Volume changes* → Decrease
 - Settlement
 - Swell potential, etc
- *Hydraulic conductivity* \rightarrow Decrease

FACTORS AFFECTING DEGREE OF COMPACTION

- Soil type
 - gradation, composition, minerals, etc.
- Compaction effort
- Moisture content

EFFECT OF MOISTURE CONTENT

Optimum moisture content (OMC): Moisture content of soil at which maximum density can be achieved for a given compactive effort.

EFFECT OF MOISTURE CONTENT

Property	Side of Optimum				
	Dry	Wet			
Soil Structure	More random (Flocculent)	More oriented (parallel)			
Shear Strength	More	Less			
Stress ~ strain behavior	Brittle	Ductile			
Swelling	More → high water deficiency	Shrink more \rightarrow abundance of water			
Permeability	More	Less			
Compressibility	More	Less			

EFFECT OF SOIL TYPE

	Soil texture and plasticity data						
	No.	Description	Sand	Silt	Clay	LĿ	PI
	1	Well-graded loamy sand	88	10	2	16	N.P.
	2	Well-graded sandy loam	72	15	13	16	N.P.
2.2	. 3	Med-graded sandy loam	73	9	18	22	4
	4	Lean sandy silty clay	32	33	35	28	9
2.1	5	Lean silty clay	5	64	31	36	15
2.1	6	Loessial silt	5	85	10	26	2
	7	Heavy clay	6	22	72	67	40
2.0 - (2)	8	Poorly graded sand	94	- (6 —	N.P.	_
2.0 - 2 1.9 - 3 1.8 - 4 1.7 - 4		Zero air voids, 100%	6 S				
		$\rho_{s} = 2.65 \text{ Mg/m}^{3}$					
1.7 - (4)	5	$\rho_{\rm s} = 2.65 {\rm Mg/m^3}$		ON	МС	of <mark>f</mark> i	ne-grain
1.6 8		$\rho_{\rm s} = 2.65 {\rm Mg/m^3}$		soi	i <mark>ls</mark> is	s hig	ne-grain her than
				soi	i <mark>ls</mark> is	s hig	•

EFFECT OF COMPACTION ENERGY

EFFECT OF COMPACTION ENERGY

With increase in compaction effort;

- **OMC** decreases
- γ_d increases

CONCLUDED