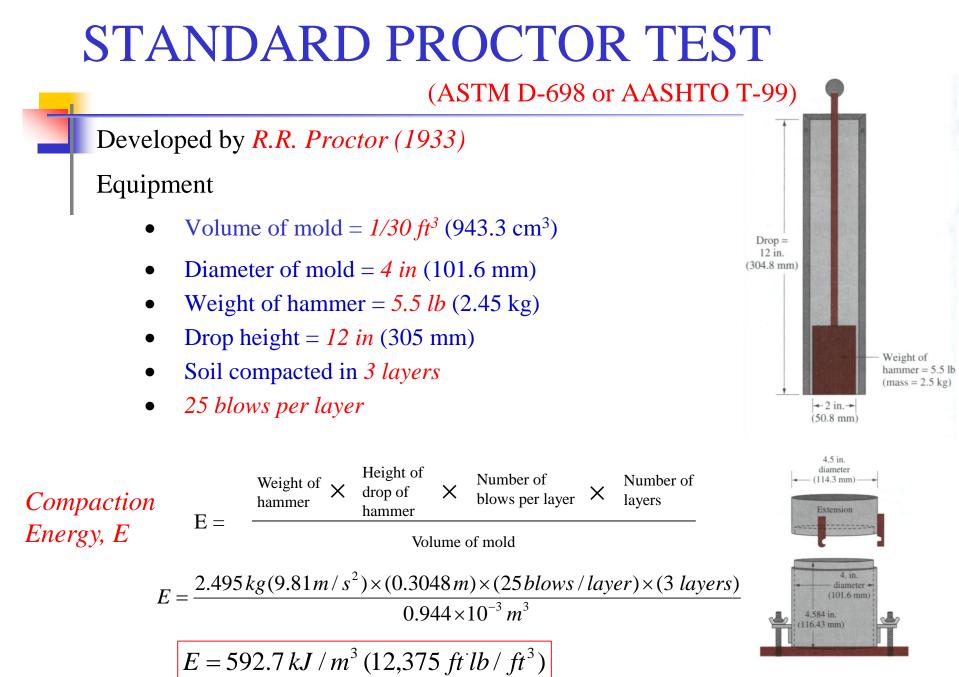

Geotechnical Engineering–I *BSc Civil Engineering – 4th Semester*

Lecture # 11 2-Mar-2015

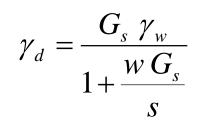
by Dr. Muhammad Irfan Assistant Professor Civil Engg. Dept. – UET Lahore Email: mirfan1@msn.com Lecture Handouts: https://groups.google.com/d/forum/geotec-1

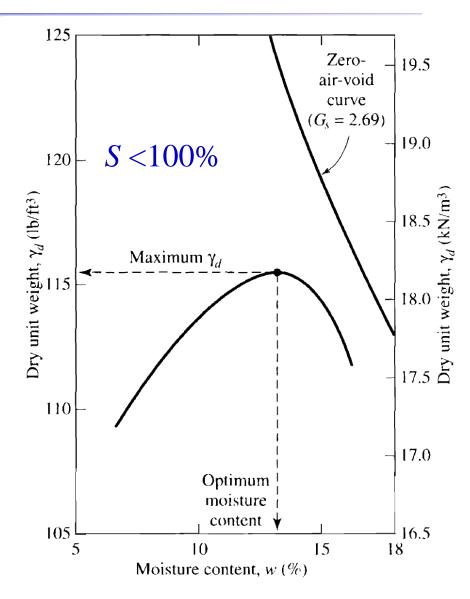
SOIL COMPACTION – LABORATORY EVALUATION


Ultimate goal \rightarrow to obtain *compaction curve* of soil

Test Procedure → Standard Proctor Test

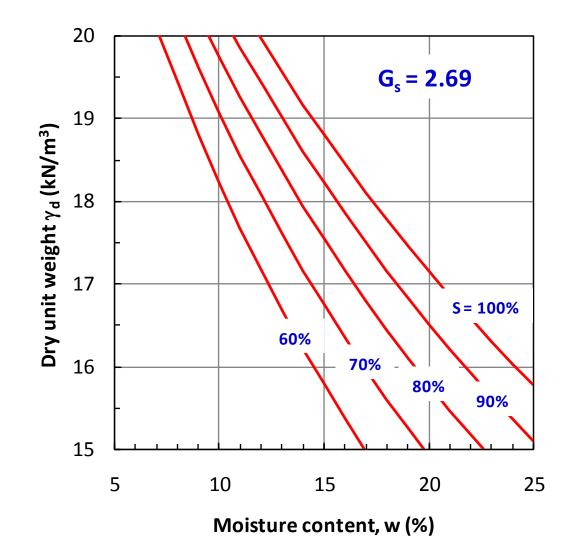
(ASTM ASTM D-698 or AASHTO T-99)


STANDARD PROCTOR TEST (ASTM D-698 or AASHTO T-99) Ultimate goal \rightarrow to obtain *compaction curve* of soil. $\rightarrow OMC \& \gamma_{d(max)}$ Dry Density, γ_d 5.5 lb **Drop height = 12 in** Moisture content, w (%) Repeat the test by adding Repeat the same more water procedure by adding more and 25 blows/layer 25 blows/layer more water every time. $w_2 (w_2 > w_1)$ W_1 γ_b $\gamma_{b(1)} = \mathbf{W}/\mathbf{V}$ $\gamma_{b(2)}$ (1+w)



ZERO AIR VOID (ZAV) CURVE

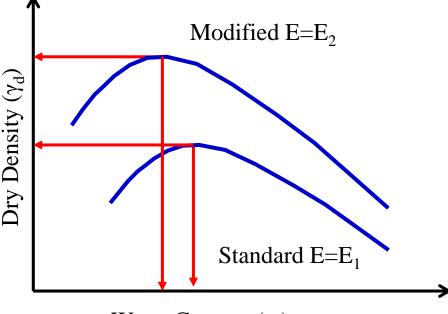
- Corresponds to *100% saturation*.
- Compaction curve always lie on the *left of ZAVC*.
 - because S > 100% is not possible


$$\gamma_d = \frac{G_s \gamma_w}{1+e}; \quad e = \frac{w G_s}{s}$$

ZERO AIR VOID (ZAV) CURVE

- Also known as *full saturation curve*.
- Similar curves can be drawn for various degrees of saturation.

$$\gamma_d = \frac{G_s \, \gamma_w}{1 + \frac{w \, G_s}{s}}$$


6

MODIFIED PROCTOR TEST

- Developed during *World War II* by *U.S. Army Corps of Engineers*
 - to represent compaction required at airfields to support *heavy aircrafts*.

Equipment

- Volume of mold = $1/30 ft^3$
- Diameter of mold = 4 in
- Weight of hammer = *10 lb*
- Drop height = 18 in
- Soil compacted in 5 layers
- 25 blows per layer

Water Content (w)

STANDARD vs MODIFIED PROCTOR TEST

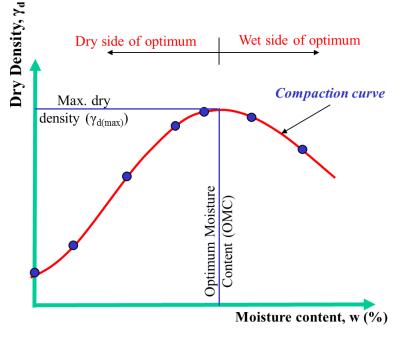
	Standard Proctor Test	Modified Proctor Test
Mold size (ft ³)	1/30	1/30
Height of drop (inch)	12	18
Hammer weight (lb)	5.5	10
No. of layers	3	5
No. of blows per layer	25	25
Energy (ft.lb/ft ³)	12,375	56,250

STANDARD vs MODIFIED PROCTOR TEST


Zero Air Voids

<u>Curve</u>

The curve represents the fully saturated condition (S = 100 %).

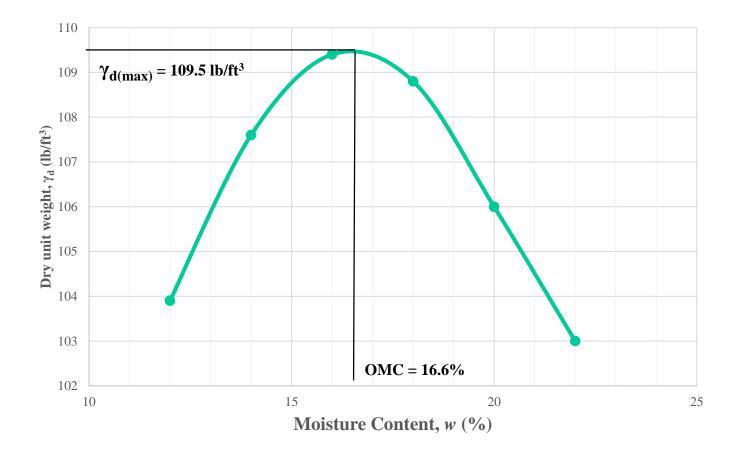

Line of Optimums

A line drawn through the peak points of several compaction curves at different compactive efforts for the same soil will be almost parallel to a 100 % saturation curve.

COMPACTION – Notes

- *OMC* is typically *slightly less* than the *plastic limit* (ASTM suggestion).
- *Typical values* of *OMC* are between 10% and 20%, with an outside maximum range of about 5% to 40%.
- Typical values of $\gamma_{d(max)}$ are around 1.6 to 2.0 Mg/m³ with the maximum range from about 1.3 to 2.4 Mg/m³.

PRACTICE PROBLEM #1


The laboratory test for a standard proctor is shown below. Determine the optimum water content and maximum dry density. If G_s of the soil is **2.70**, draw the ZAV curve.

Volume of Proctor Mold (ft ³)	Weight of wet soil in the mold (lb)	Water Content (%)
1/30	3.88	12
1/30	4.09	14
1/30	4.23	16
1/30	4.28	18
1/30	4.24	20
1/30	4.19	22

PRACTICE PROBLEM #1

Volume of Proctor Mold (ft ³)	Weight of wet soil in the mold (lb)	Wet Unit Weight (lb/ft ³)	Water Content (%)	Dry Unit Weight (lb/ft ³)
1/30	3.88	116.4	12	103.9
1/30	4.09	122.7	14	107.6
1/30	4.23	126.9	16	109.4
1/30	4.28	128.4	18	108.8
1/30	4.24	127.2	20	106.0
1/30	4.19	125.7	22	103.0

PRACTICE PROBLEM #1

CONCLUDED