

Geotechnical Engineering—I BSc Civil Engineering — 4th Semester

Lecture # 12 6-Mar-2015

Dr. Muhammad Irfan

Assistant Professor

Civil Engg. Dept. – UET Lahore

Email: mirfan1@msn.com

Lecture Handouts: https://groups.google.com/d/forum/geotec-1

The laboratory test results of a standard Proctor test are given in the following table:

Volume of mold (ft ³)	Weight of moist soil in mold (lb)	Moisture content, <i>w</i> (%)	
$\frac{1}{30}$	3.63	10	
<u>1</u> 30	3.86	12	
1/30	4.02	14	
$\frac{1}{30}$	3.98	16	
$\frac{1}{30}$	3.88	18	
$\frac{1}{30}$	3.73	20	

Determine the maximum dry unit weight of compaction and the optimum moisture content.

Volume of mold, V (ft ³)	Weight of soil, W (lb)	Moist unit weight, γ (lb/ft³) ^a	Moisture content, w (%)	Dry unit weight, γ_d (lb/ft 3) b
<u>1</u>	3.63	108.9	10	99.0
$\frac{1}{30}$	3.86	115.8	12	103.4
$\frac{1}{30}$	4.02	120.6	14	105.8
$\frac{1}{30}$	3.98	119.4	16	102.9
$\frac{1}{30}$	3.88	116.4	18	98.6
$\frac{1}{30}$	3.73	111.9	20	93.3

 $^{^{}a}\gamma = W/V$ $^{b}\gamma_{d} = \gamma/\{1 + [w (\%)/100]\}$

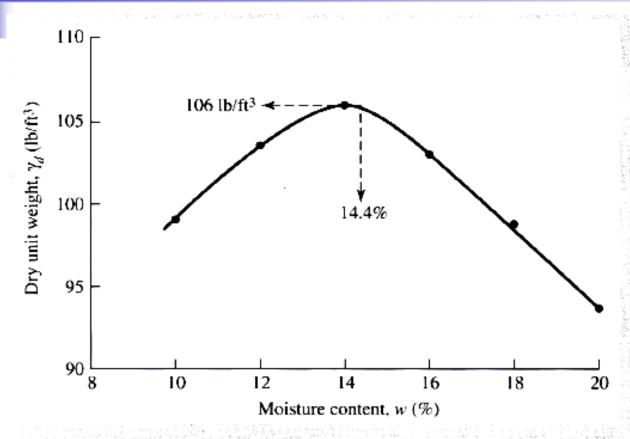
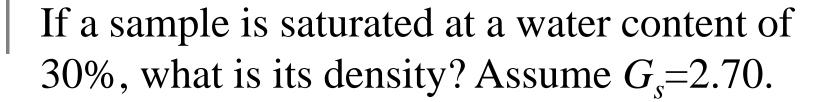



Figure 5.7 Moisture content, w (%)

The plot of γ_d versus w is shown in Figure 5.7. From the plot, we see that the maximum dry unit weight $(\gamma_{d(max)}) = 106 \text{ lb/ft}^3$ and that the optimum moisture content is 14.4%.

Practice Problem #4

- Q: The following data are available in connection with the construction of an embankment:
 - (a) Soil from borrow Pit: Natural density = 1.75 Mg/m³, Natural moisture content = 12%
 - (b) (b) Soil after Compaction: Density 2 Mg/m³, water content 18%

For every 100 m³ of compacted soil of the embankment, estimate

- (i) the quantity of soil to be excavated from the borrow pit, and
- (ii) the amount of water to be added.

A borrow pit's soil is being used as earth fill at a construction project. The in situ dry unit weight of the borrow pit soil was determined to be 17.18 kN/m³. The soil at the construction site is to be compacted to a dry unit weight of 18.90 kN/m³. The construction project requires 15,000 m³ of compacted fill.

Determine the volume of soil required to be excavated from the borrow pit to provide the necessary volume of compacted fill.

Solution

Total dry weight required to furnish the compacted fill

- = Total dry weight of soil required to be excavated from the borrow pit
- $= (18.90 \text{ kN/m}^3)(15,000 \text{ m}^3) = 283,500 \text{ kN}$

Volume of soil required to be obtained from the borrow pit

$$= \frac{283,500 \text{ kN}}{17.18 \text{ kN/m}^3} = 16,500 \text{ m}^3$$

The natural moisture content of a borrow pit material is 8%. Assuming 3000 g of moist soil for a standard compaction test, how much water is to be added to bring the sample to 11%, 15%, and 20% water content?

CONCLUDED