

#### **Geotechnical Engineering–I** *BSc Civil Engineering – 4th Semester*

#### Lecture # 17 3-Apr-2015

by Dr. Muhammad Irfan Assistant Professor Civil Engg. Dept. – UET Lahore Email: mirfan1@msn.com Lecture Handouts: https://groups.google.com/d/forum/geotec-1

# **CONSOLIDATION OF SOIL**

Load/stress application on soil  $\rightarrow$  causes soil compression

#### <u>Reasons</u> for soil compression

- *Compression/expulsion of <u>air</u>* in soil voids
  - Soil *compaction* (already discussed)
- **Distortion/crushing** of soil grains
  - *Negligible* under normal structural loads
- *Expulsion/compression of <u>water</u>* from the voids
  - Soil consolidation



# **CONSOLIDATION OF SOIL**

Which soils have high water holding ability

Phenomenon associated with *saturated <u>fine</u> grained soils* only.

Consolidation  $\rightarrow$  *compression/volume reduction* of soil mass due to *expulsion of water* when subjected to *external load/stress*.



## **CONSOLIDATION OF SOIL**

Soil *volume reduction* due to *expulsion of water* upon application of *external load/stress*.

*fully saturated soil*, so all voids filled with water only (*no air*)

**Before Consolidation** 

After Consolidation



**Saturated Fine-grained Soil** 

## **Consolidation Damages**

Soil *volume reduction* due to *expulsion of water* upon application of *external load/stress*.

- $\rightarrow$  *Settlement* of structures
- $\rightarrow$  *Cracks* in walls, foundations, etc.



#### **MECHANISM OF CONSOLIDATION**

#### Spring-Cylinder Model



### **Consolidation Model** (Spring-Cylinder Model)



(b)

 $P_{\rm s}$  = Load carried by the *spring*  $P_{W}$  = Load carried by *water* 

 $P = P_S + P_W$ 

With the valve closed

 $P_{S} = 0, \&$ 

## Consolidation Model (Spring-Cylinder Model)

When the *valve is opened*  $\rightarrow$  water flow outward

Decrease in excess hydrostatic pressure Increase in compression of spring



 $P_S$  = Load carried by the spring  $P_W$  = Load carried by water

 $P = P_S + P_W$ 

With the valve opened  $P_S > 0$ , &  $P_W < P$ 

### Consolidation Model (Spring-Cylinder Model)

After some time  $\rightarrow$  *equilibrium* is reached



 $P_S$  = Load carried by the spring  $P_W$  = Load carried by water

 $P = P_S + P_W$ 

With the valve opened; after some time span.

Excess hydrostatic pressure,  $\Delta u = 0$ 

 $P_W = 0, \&$  $P_S = P$ 

#### Spring-Cylinder Model → Application to Soil

- Similar phenomenon occurs when load is applied on a *saturated clay deposit* (very low permeability).
  - Load is first taken by water only.
  - Pore water pressure slowly dissipates,
  - Soil particles start taking load gradually
  - After some time water completely escapes through voids, and the load is carried only by soil particles.



#### Spring-Cylinder Model → Application to Soil

#### Spring-cylinder assembly

Total load acting on the system = PLoad carried by water =  $P_W$ Load carried by Spring =  $P_S$  $P = P_S + P_W$ OR  $P_S = P - P_W$ 

#### In case of soil

Stress acting on soil mass  $\rightarrow$  Total Stress =  $\sigma$ Stress carried by water  $\rightarrow$  Pore water pressure = uStress carried by soil particles  $\rightarrow$  Effective stress =  $\sigma'$   $\sigma = \sigma' + u$ OR  $\sigma' = \sigma - u$ 



### Consolidation Model (Hydro-mechanical Analog)



# **Consolidation vs Compaction**

| Compaction                                                                     | Consolidation                                                 |
|--------------------------------------------------------------------------------|---------------------------------------------------------------|
| Applicable to <i>unsaturated soils</i> .                                       | Applicable to <i>saturated soils</i> .                        |
| Decrease in <i>air voids</i> (not water voids)                                 | Decrease in <i>water voids</i> (air voids do not exist).      |
| Applicable for <i>both fine-grained and coarse-grained soils</i>               | Only applicable for <i>fine-grained soils</i>                 |
| Instantaneous process                                                          | <i>Time-dependent</i> process<br>Can occur over 100s of year. |
| May be accomplished by <i>rolling</i> , <i>tamping</i> , or <i>vibration</i> . | In general, caused by <i>static loading</i> .                 |

## CONCLUDED