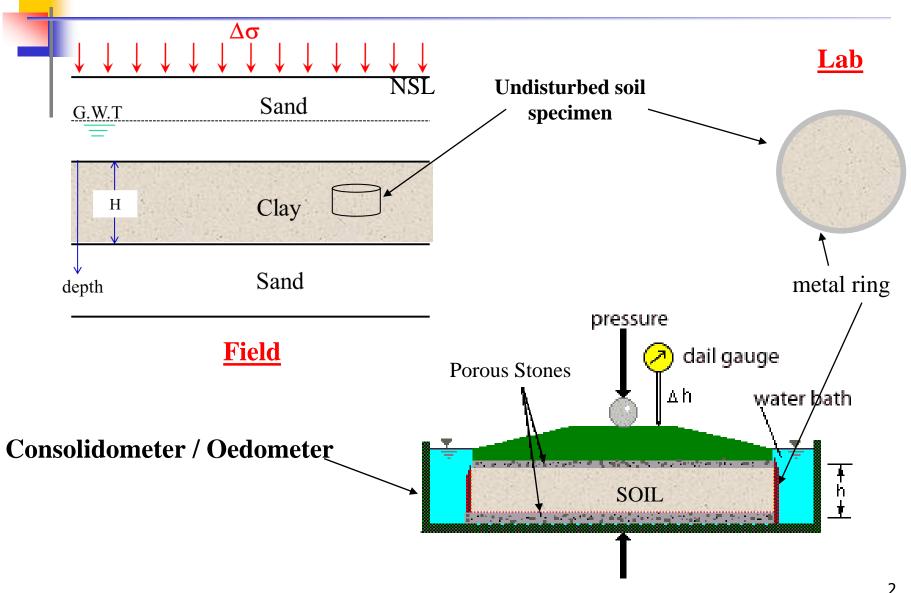


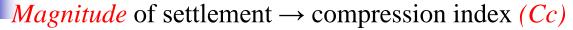
Geotechnical Engineering—I BSc Civil Engineering — 4th Semester

Lecture # 19 10-Apr-2015

Dr. Muhammad Irfan


Assistant Professor

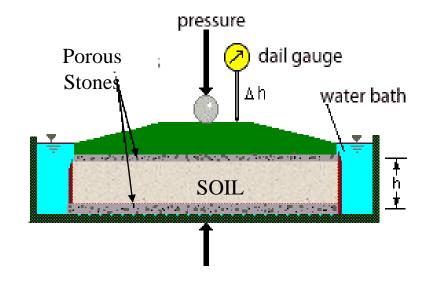
Civil Engg. Dept. – UET Lahore


Email: mirfan1@msn.com

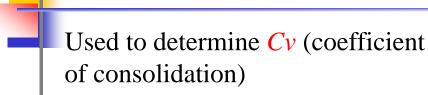
Lecture Handouts: https://groups.google.com/d/forum/geotec-1

Consolidation Test

Interpretation of Test Results

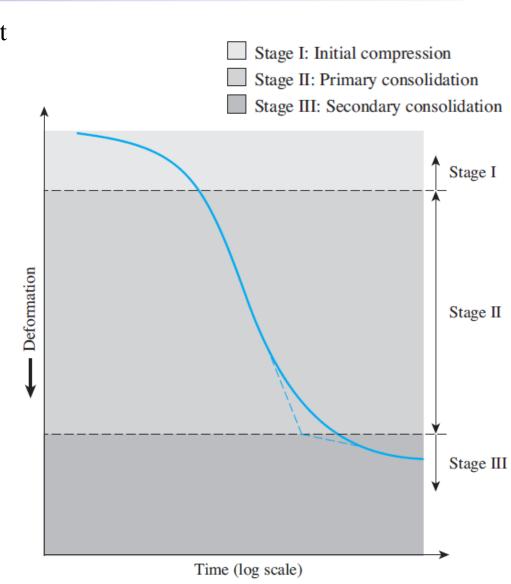


Rate of consolidation \rightarrow co-efficient of consolidation (Cv)

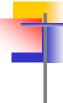

Time required for consolidation (Consolidation Time) $\rightarrow t = \left(\frac{T \cdot H^2}{C_V}\right)$

1. Time ~ Deformation curve

- *i.* Cv (Coefficient of consolidation)
- 2. Pressure ~ Deformation curve
 - *i. Cc* (Compression index)
 - *ii.* Cr (Recompression index)
 - *iii.* a_V (Coefficient of compressibility)
 - iv. m_V (Coefficient of volume change)


Deformation ~ Time Plot

- Rate of consolidation
- Consolidation *Time*


Methods of Determining *Cv*

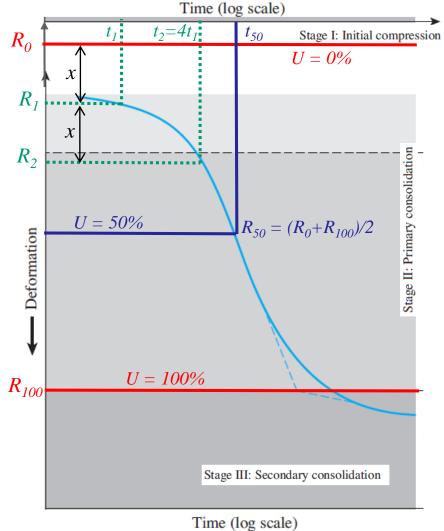
- 1. Casagrande's *log-time* method (1938)
- 2. Taylor's *Square root of time* method (1948)

DEFORMATION ~ TIME PLOT

Casagrande's log-time method

Used to determine *Cv* (coefficient of consolidation)

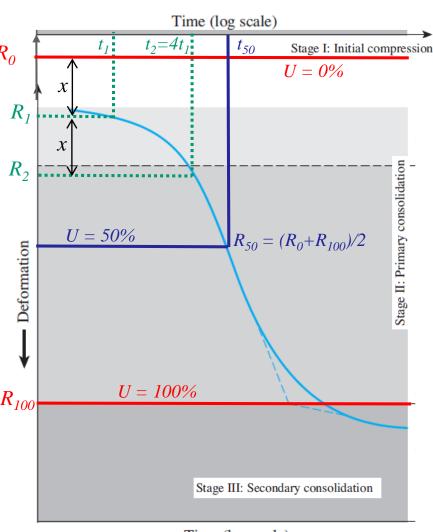
- Rate of consolidation
- **Consolidation Time**


$$C_V = \left(\frac{T \cdot H^2}{t}\right)$$

 t_{50} : obtained from deformation ~ time plot

H = t/2 (for two-way drainage)

t =height of specimen

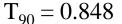

T = Time factor = 0.197 (for u=50%)

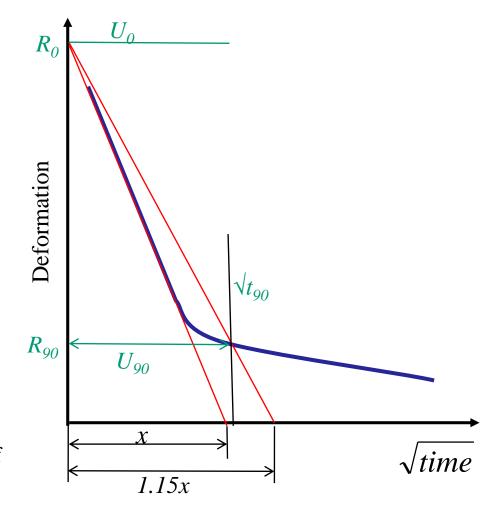
DEFORMATION ~ TIME PLOT

Casagrande's log-time method

- Plot specimen *deformation* against *log-of-time*
- • R_0 and R_{100} represent dial readings for zero percent (U_0) and 100% (U_{100}) degree of consolidation R_0 respectively.
- For determining U_{100}
- •Draw *two tangents* to the bottom part of curve. Intersection of these tangents represent U_{100} .
- The corresponding abscissa represent t_{100} .
- For determining $U_{\underline{0}}$
- Choose any two times t_1 and t_2 , such that $t_2 = 4t_1$
- The corresponding dial readings are R_1 and R_2
- Mark off vertical distance between $R_1 \& R_2$ (say 'x')
- • R_0 lies 'x' distance above R_1 .
- • R_{50} represents 50% degree of consolidation (U_{50})
- • R_{50} lies mid-way between R_0 and R_{100} .
- The time (t_{50}) is used for determination of Cv.

DEFORMATION ~ TIME PLOT Taylor's Square-root of Time Method


Uses t_{90} for computing Cv


Plot *deformation* ~ *square root of time*.

- Project the straight line portion of the initial part of curve backward to zero time to define R_0 or U_0 .
- Draw a second line from R_0 with abscissa 1.15 times as large as the corresponding values on the first line.
- The intersection of the second line with the laboratory curve defines R_{90} or U_{90} .

$$C_V = \left(\frac{T_{90} \cdot H^2}{t_{90}}\right)$$

 T_{90} = Time factor for 90% degree of consolidation (U_{90}).

DEFORMATION ~ TIME PLOT

Summary

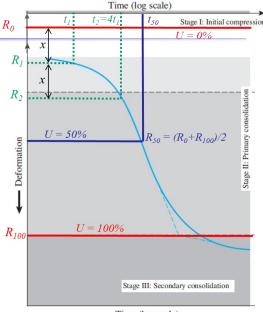
Used for determining *Cv*

Cv is used for determining rate of consolidation, and consolidation time.

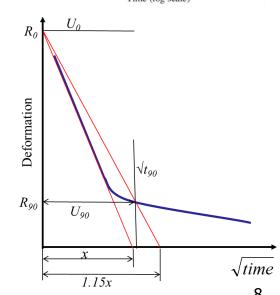
Casagrande's log-time fitting method

Determines Cv corresponding to U=50%.

Deformation ~ *log-time* plot

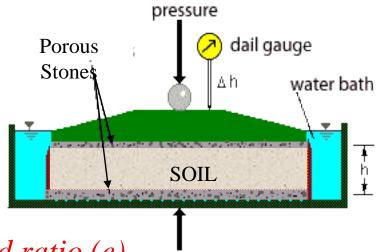

$$C_V = \left(\frac{T_{90} \cdot H^2}{t_{90}}\right)$$

<u>Taylor's square root of time method</u>


Determines Cv corresponding to U=90%.

Deformation ~ square root of time plot

Cv determined from $\sqrt{(time)}$ method is often slightly greater than the log-time method.



Pressure ~ Deformation Curve

- *i. Cc* (Compression index)
- *ii. Cr* (Recompression index)
- iii. a_V (Coefficient of compressibility)
- *iv.* m_V (Coefficient of volume change)

Deformations plotted in terms of *void ratio* (*e*)

- Void ratio ~ pressure plot (e ~ p plot)
- Void ratio \sim log of pressure ($e \sim log p$ plot)

Pressure ~ Void Ratio Curve

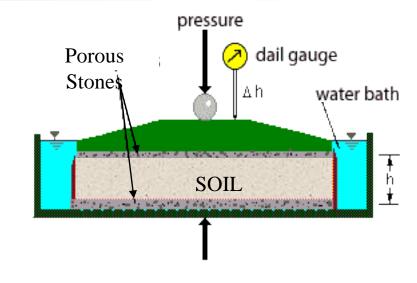
Determination of e_0

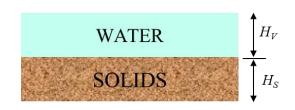
 e_o = initial (or in-situ) void ratio

$$e_0 = \frac{V_V}{V_S} = \frac{A \cdot H_V}{A \cdot H_S} = \frac{H_V}{H_S} \cdot \dots (1)$$

$$H_V = H - H_S$$

$$V_{S} = \frac{W_{S}}{G_{S} \cdot \gamma_{w}}$$

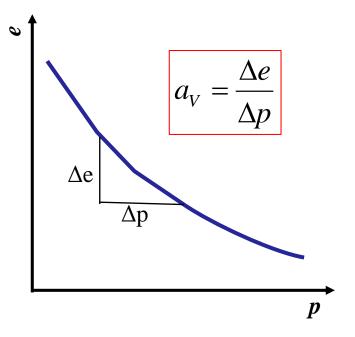

$$A \cdot H_S = \frac{W_S}{G_S \cdot \gamma_w}$$


$$H_S = \frac{W_S}{G_S \cdot \gamma_w \cdot A}$$

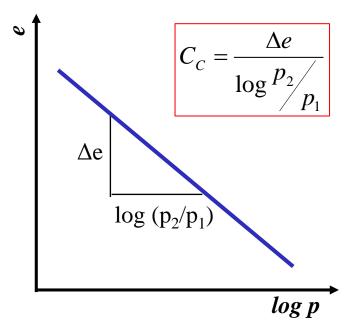
$$H_V = H - \frac{W_S}{G_S \cdot \gamma_w \cdot A}$$

$$eq.(1) \Rightarrow e_0 = \frac{H \cdot (G_S \cdot \gamma_w \cdot A) - W_S}{W_S} \cdot \dots (2)$$

Ws = weight of soil solids



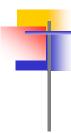
$$W_S = \frac{W_T}{1+w}$$


Determined from over drying the specimen at the end of consolidation test.

Pressure ~ Deformation Curve

$e \sim p$ plot

$e \sim log p$ plot



 a_V = coefficient of compressibility

Cc = compression index

 m_V = coefficient of volume change

$$m_V = \frac{a_V}{1+e}$$

CONCLUDED