

Geotechnical Engineering–I *BSc Civil Engineering – 4th Semester*

Lecture # 23 27-Apr-2015

by Dr. Muhammad Irfan Assistant Professor Civil Engg. Dept. – UET Lahore Email: mirfan1@msn.com Lecture Handouts: https://groups.google.com/d/forum/geotec-1

WATER FLOW THROUGH SOILS

$$q = k \cdot i \cdot A = k \cdot \frac{\Delta h}{L} \cdot A$$

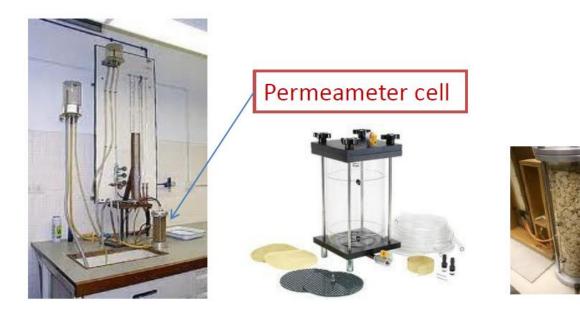
To determine the quantity of flow, two parameters are needed

* k = hydraulic conductivity (how permeable is the soil medium)
* i = hydraulic gradient (how large is the driving head)

Determination of 'k'

1- Laboratory Testing \rightarrow [constant head test & falling head test]

- 2- Field Testing → [pumping from wells]
- **3-** Empirical Equations


Determination of 'i'

- 1- from the head loss and geometry
- 2- flow nets

Today's discussion

CONSTANT HEAD PERMEABILITY TEST (ASTM D2434)

- Primarily used for *coarse-grained soils*.
- A *constant head of water* is applied to each end of soil in a "permeameter".
- After a *constant flow rate* is established, water is collected in a graduated flask for a known duration.

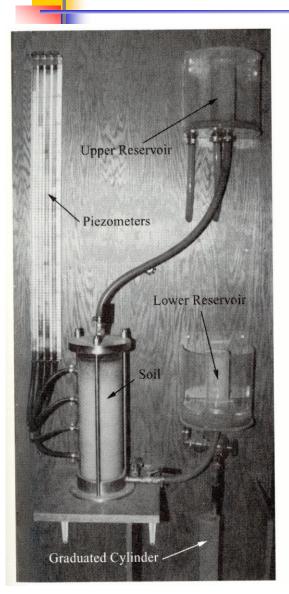
CONSTANT HEAD PERMEABILITY TEST (ASTM D2434)

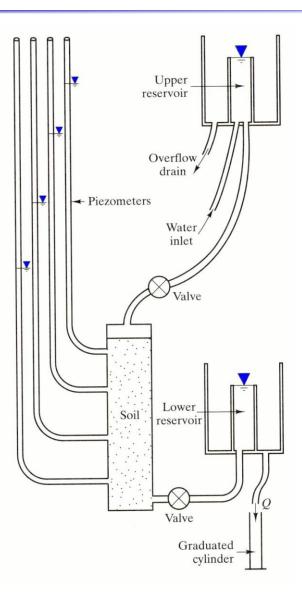
Constant Level

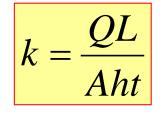
Area A

• The total volume of collected water may be expressed as;

$$Q = Avt = A(ki)t$$
$$i = \frac{h}{L} \qquad Q = A\left(k\frac{h}{L}\right)t$$
$$\frac{Q}{k} = \frac{QL}{Aht}$$


Q Q Q Craduated flask


L


- A = x-sec area of soil specimen
 - = duration of water collection

= volume of water collected

CONSTANT HEAD PERMEABILITY TEST (ASTM D2434)

$$k_{20^{\circ}C} = k_{\tau^{\circ}C} \frac{\eta_{\tau^{\circ}C}}{\eta_{20^{\circ}C}}$$

FALLING/VARIABLE HEAD PERMEABILITY TEST

(ASTM D5084)

- Standpipe with Area a dh h_1 h_2 Area A Τ. Constant Level
 - Mainly used for *fine-grained soils* but can also be used for coarse-grained soils.
 - Procedure is same as constant head test except:
 - Record *initial head difference*, h₁ at t=0.
 - Allow water to flow through the soil specimen.
 - Record the *final head difference*, h_2 at $t=t_2$.
 - Record the *volume of water*, *Q* (in ml), collected at the outlet during this time.

FALLING/VARIABLE HEAD PERMEABILITY TEST

Standpipe with

Area a

dh

Area A

Constant Level

 h_1

 h_2

Τ.

• Rate of flow of water through the specimen at any time 't' can be given by; $q = k \frac{h}{L} A = -a \frac{dh}{dt}$ q: rate of flow a: cross sectional area of standpipe

A: cross sectional area of the soil sample

 h_1 = head at the start of test

 h_2 = head at the end of test

A constant head permeability test on a medium sand sample having a x-sectional area of 7585mm² yielded the following data.

Distance between stand pipes = 100 mmConstant head difference = 70.4 mmQuantity of water collected = $500 \times 10^3 \text{ mm}^3$ Time of collection = 132 sec

Determine the coefficient of permeability of sand specimen.

Practice Problem #2

In a falling head permeability test, a soil sample of 7585mm² cross-section and 210.2mm length was subjected to a flow of water from a stand-pipe having cross-sectional area of 730mm². The stand-pipe level changed from 1650mm to 550mm above reservoir datum during a time interval of 182sec. Determine the coefficient of permeability of soil.

Practice Problem #3

A constant head permeameter, 85 mm in diameter containing a fine sand sample 450mm long, allowed water to flow at a rate of 184ml/min under steady-flow conditions. Given the difference in head between two points 240mm apart was 375mm, determine the coefficient of permeability in mm/sec. When the same size sample is tested in a falling head apparatus using a stand-pipe of 32.5mm diameter. Calculate the time required for the water in the stand-pipe to drop from 1750mm to 1000mm above outflow level to the nearest five seconds.

DETERMINATION OF 'k' – EMPIRICAL EQUATIONS

Allen Hazen's Method

Permeability of filter sands

 $k = C \cdot (D_{10})^2$

k = coefficient of permeability (cm/sec)

C = empirical coefficient varying from 90 to 120; typically assumed as 100 D_{10} = effective size in cm

Applicability $\rightarrow k > 10^{-3} \text{ cm/sec}$ D_{10} ranging from 0.1 mm - 3 mm Cu < 5

Permeability from Consolidation Test $k = C_V . m_V . \gamma_w$ Applicability \rightarrow Clays with k $\leq 10^{-7}$ cm/sec

DEPENDENCE OF HYDRAULIC CONDUCTIVITY (k)

1- Effect of Shape and Size of Particles

 $k = C \cdot (D_{10})^2$ Allen Hazen's equation

i.e., coarser the soil, larger would be permeability

2- Effect of Void Ratio

For sands, the following two equations hold good.

$$\frac{k_1}{k_2} = \frac{e_1^2}{e_2^2} \qquad \text{OR} \qquad \frac{k_1}{k_2} = \frac{e_1^3}{1+e_1} \cdot \frac{1+e_2}{e_2^3}$$

i.e., larger the void ratio, greater would be permeability

DEPENDENCE OF HYDRAULIC CONDUCTIVITY (k)

3- Effect of Stratification

Permeability *parallel* to the strata > permeability *perpendicular* to the strata

4- Effect of Degree of Saturation

Sample for permeability test \rightarrow *fully saturated*.

Low degree of saturation \rightarrow low permeability; because entrapped air blocks water flow

5- Effect of Temperature

Temperature affects viscosity and density of pore fluid

Higher the temperature, higher will be permeability.

Lab tests are standardized at 20°C

$$k_{20^{\circ}C} = k_{\tau^{\circ}C} \frac{\eta_{\tau^{\circ}C}}{\eta_{20^{\circ}C}}$$

CONCLUDED