

Geotechnical Engineering–I *BSc Civil Engineering – 4th Semester*

Lecture # 7 16-Feb-2015

by Dr. Muhammad Irfan Assistant Professor Civil Engg. Dept. – UET Lahore Email: mirfan1@msn.com Lecture Handouts: https://groups.google.com/d/forum/geotec-1

SOIL CONSISTENCY

- Indicates the *degree of firmness* of *fine-grained soil*.
- Generally expressed in terms of very soft, soft, stiff, very stiff, and hard.

Soil behave like:

- SOILD at very low moisture content
- LIQUID at very high moisture content

ATTERBERG/CONSISTENCY LIMITS

ATTERBERG LIMITS

LIQUID LIMIT (*LL* or w_{LL})

Liquid Limit (LL) is defined as the *moisture content* at which soil begins to behave as a liquid material and begins to flow.

(LL of a fine-grained soil gives the moisture content at which the shear strength of the soil is approximately 2.5kN/m²)

LIQUID LIMIT DETERMINATION

LIQUID LIMIT DETERMINATION

A) Three-Point Method

LL is the *moisture content* required to close a 2-mm wide groove in a soil pat a distance of 12.7 mm (1/2") along the bottom of the groove after 25 blows.

LIQUID LIMIT DETERMINATION

B) One-Point Method

$$LL = w_n \left(\frac{N}{25}\right)^{\tan\beta}$$

N = number of blows $w_n = corresponding moisture content$ $\tan \beta = 0.121$

- Assumes a constant slope of the flow curve.
- The slope is a statistical result of 767 liquid limit tests.

Limitations:

- tan β is an empirical coefficient, so it is not always 0.121.
- Good results can be obtained only for the blow number between 20 to 30.

FLOW INDEX (I_F)

PLASTIC LIMIT (*PL* or w_{PL})

Plastic Limit (PL) is defined as the *moisture content* at which soil begins to behave as a plastic material.

Plasticity Index (*PI* or I_P) = LL - PL

PLASTIC LIMIT DETERMINATION

ASTM D-4318

Moisture content at which the soil when rolled into threads of 3.2mm(1/8 in) in diameter, will crumble.

PL = w% at 3.2 mm (1/8 in) dia.

SHRINKAGE LIMIT

Shrinkage Limit (SL) is defined as the *moisture content* at which no further volume change occurs with further reduction in moisture content.

$$SL = w_i(\%) - \Delta w(\%)$$

SHRINKAGE LIMIT Soil volume = V_i Soil mass = M_1 Soil volume = V_f ---Soil mass = M_2 Carl Carls Porcelain dish (a) (b) $SL = w_i(\%) - \Delta w(\%)$ $\Delta w (\%) = \frac{(V_i - V_f)\rho_w}{M_2} \times 100$ $w_i(\%) = \frac{M_1 - M_2}{M_2} \times 100$ **<u>Assignment</u>: Prove this relationship**

PLASTICITY/A-LINE CHART

PLASTICITY/A-LINE CHART

PLASTICITY/A-LINE CHART

LIQUIDITY INDEX (I_L)

$$I_L = \frac{w_n - PL}{LL - PL}$$

where,

 I_L = Liquidity index

 w_n = Natural moisture content

PL= Plastic limit moisture content

LL= Liquid limit moisture content

 $0 < I_L < 1 \rightarrow \text{Soil is in plastic state}$ $I_L < 0 \rightarrow \text{Soil is in semi-plastic or solid state}$ $I_L > 1 \rightarrow \text{Soil is in liquid state (quick clays or ultra sensitive clays)}$

TOUGHNESS INDEX (I_t)

$$I_{t} = \frac{Plasticity \ Index}{Flow \ Index} = \frac{PI}{I_{F}}$$

Soil Type	I_t
Clayey soils	0-3
Soils which are friable at plastic limit (e.g. Silts)	<1

Toughness index (I_t) is useful to distinguish between soils of different physical properties.

ACTIVITY, A

$A = \frac{PI}{\% \ clay \ fraction \ smaller \ than < 0.002 mm}$

- Helpful to predict the *dominant clay type/mineral* in soil sample.
- *High activity* signifies *large volume change* when wetted and *large shrinkage* when dried.

Clay Type	Activity
Inactive Clays	< 0.75
Normal Clays	0.75 < A < 1.25
Active Clays	> 1.25

The following data were recorded from a *LL* test on a silty clay;

No. of blows	Water content (%)
35	41.1
29	41.8
21	43.5
15	44.9

If *PL*=23.4%, determine *LL*, *flow index*, and the *toughness index*.

PI = 19.4%

Four different types of soil were encountered in a big project. Their LL, PL, and natural moisture content (NMC) are given below;

Type of Soil	Liquid Limit (%)	Plastic Limit (%)	NMC (%)
1	120	40	150
2	64	32	34
3	60	30	30
4	65	32	25

Determine liquidity index and comment on the state of soil in the field.

$$I_L = \frac{W_n - PL}{LL - PL}$$

A soil specimen has liquidity index of 0.2, liquid limit of 56% and plasticity index of 20%. Determine the natural moisture content of this soil specimen.

Liquid limit test carried out on two samples of clay resulted in the following information.

	Test #	1	2	3	4
Sample #1	w (%)	120	114	98	96
	No. of blows	7	10	30	40
Sample #2	w (%)	96	74	45	30
	No. of blows	9	15	32	46

PL for sample #1 is 40% and PL for sample is 32%. Determine the flow index and toughness index for two samples.

CONCLUDED