SINGLE DEGREE OF FREEDOM
(SDOF) SYSTEM



Free undamped vibration single DoF

Recall: Free vibrations — system given initial disturbance and oscillates free of external forces.

Undamped: no decay of vibration amplitude

Single DoF:
° mass treated as rlgld i %%{i}.}%:‘ m
. Elasticity idealized by single spring

ol L Yo o

° only one natural frequency. Eauilibrs I
gquilibrium 1

position s ¥ |mg
The equation of motion can be derived using ' Y -
. J2.10 e
. Newton’s second law of motion '

. D’Alembert’s Principle,
. The principle of virtual displacements and,
. The principle of conservation of energy.



Free undamped vibration single DoF

Using Newton'’s second law of motion to develop the equation of motion.

1.  Select suitable coordinates

2 Establish (static) equilibrium position

3. Draw free-body-diagram of mass

4 Use FBD to apply Newton’s second law of motion:
“Rate of change of momentum = applied force”

F(t):;(mm(;tt)j

As m is constant

2
X(t
F(t):mOI g ):mx
dt
For rotational motion ok
iy WY m
M(t)=J6 — —
|
For the free, undamped single DoF system Equilibrium 1
position g x I
F(t)=-kx=mX ' Y =
or J2.¢ et

m¥+kx =0
N



Free undamped vibration single DoF
Principle of virtual displacements:

“When a system in equilibrium under the influence of forces is given a virtual displacement. The
total work done by the virtual forces = 0”

Displacement is imaginary, infinitesimal, instantaneous and compatible with the system

k F=—=== i 7
I [ |
m |fee-- 1 om om < m |le----
Y B S } kx - mx
(reactive (nertia
force) force)
(a) Mass under a
displacement x (b) Free-body diagram

When a virtual displacement dx is applied, the sum of work done by the spring force and the
inertia force are set to zero:

—(kx)ox —(mx)ox=0

Since dx # 0 the equation of motion is written as:

kx +mx=0



Free undamped vibration single DoF

Principle of conservation of energy:

No energy is lost due to friction or other energy-dissipating mechanisms.
If no work is done by external forces, the system total energy = constant
For mechanical vibratory systems:

KE + PE =constant

or

:jjt(KE+PE):0

Since

or
mX +kx =0



Free undamped vibration single DoF

Vertical mass-spring system:

¥
k 'Fll + hhi
ko,
O T _ Static equilibrium
position
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— Final position

M l l +x

W = mg W+ kx



Free undamped vibration single DoF

Vertical mass-spring system:

k(0 + x) Spring force
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Potential
energy
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° From the free body diagram:, using Newton’s second law of motion:

mX = —K( X+ g )+mg
since  kog =mg

mX+kx =0
. Note that this is the same as the egn. of motion for the horizontal mass-spring system
. .. If X Is measured from the static equilibrium position, gravity (weight) can be ignored

° This can be also derived by the other three alternative methods.



Free undamped vibration single DoF

The solution to the differential egn. of motion.
As we anticipate oscillatory motion, we may propose a solution in the form:

X(t)=Acos(w,t)+Bsin(m,t) K
or M
X(t) = Ae'“nt + Be~ient i o e o 104
alternatively, if we let s =tiw, ’__xa)
x(t)=Ce*™
By substituting for x(t) in the eqn. of motion: C( m52 +k)=0
since ¢=0,
ms® +k =0 < Characteristic equation
and

: ,k :
S=%lw, =%,/ — <« roots= elgenvalues
m

or



Free undamped vibration single DoF
The solution to the differential egn. of motion.
Applying the initial conditions to the general solution:  x(t)= Acos( wnt)+ Bsin( m,t)

X(t=0) = A=Xp Initial displacement
X(t=0) = Bay, =%y Initial velocity

The solution becomes: “
X(t)=Xg cos(mnt)+-—2sin(m,t)

Wn
V2 %
if welet A= x§+[0j

W

and ¢:atan[xoa)”j then
XO

X(t)=Aysin(w,t +¢)

This describes motion of harmonic oscillator:
° Symmetric about equilibrium position
. Thru equilibrium: velocity is maximum & acceleration is zero

. At peaks and valleys, velocity is zero and acceleration is maximum

o, =V(k/m) is the natural frequency



Mr)= Acos{wt - d)

(a) (b)
Slope = #
o)
' - = 2w
In_ w

Velocity maximum

.ru
0 =1
i R
e —f— Amplitude,

£ o W22
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FREE VIBRATION OF UNDAMPED SINGLE-DEGREE-OF-FREEDOM SYSTEMS



Free undamped vibration single DoF

Note: for vertical systems, the natural frequency can be written as:

k
C()n: a
since k:m
Ot
W, = 3 o fnzl 3
5St 272' 5St



Free undamped vibration single DoF

Torsional vibration.

Approach same as for translational system. Laboratory exercise.



Free undamped vibration single DoF

Compound pendulum.

Given an initial angular displacement or velocity, system
will oscillate due to gravitational acceleration.

Assume rigid body — single DoF

Restoring torque:

mgd sin &

. Equation of motion :

J,0+mgdsind=0 <« nonlinear2" order ODE
Linearity is approximated if sin@ ~ & Therefore :
Jo@+mgdo =0

Natural frequency : v

mqd
on= |
0




Free undamped vibration single DoF

Stability.
Some systems may have inherent instability

K}
Fi
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Free undamped vibration single DoF
Stability.
Some systems may have inherent instability
When the bar is deflected by 0,

The spring forceis :
2kl sin@

The gravitational forcethruGis:
mg
The inertial moment about O due to the angular acceleration & is :

. ml?,
JO=—120
0 3

The eqn. of motion is written as :

mi? |
36’ + (2klsind@)lcosd — mg sind =0




Free undamped vibration single DoF

For small oscillations, sin@=60 and cos@ =1 .Therefore

2
M=y 4 oKz — My _g
3 2

or

2
i . [12k| —Bmglje 0

2ml?

. 12kI% —3mgl
i 2ml?

o )

k
/ T
1 fng
1
2
J QEJJ 0

&{ sin B



Free single DoF vibration + viscous damping

Recall: viscous damping force o« velocity:

F=-cx  c=damping constant or coefficient [Ns/m]

Applying Newton's second law of motion to obtain the egn.of motion :
mX=-cx—kx or mX+cx+kx=0

If the solution is assumed to take the form : I

1
. st _ +i ~
x(t)=Ce where s = tia, ﬁ_\.ﬁﬂﬁ_ N
then: x(t)=sCe® and x(t)=s°Ce" -] i -
Substituting for x, x and X in the eqn.of motion 7 & —
EAT A

msZ+cs+k =0

The root of the characteristic egn. are:

SN D

- 2m

S19 = =—
12 2m 2m

The two solutions are :

X((1)=Ce'  and  x,(t)=C,e™



Free single DoF vibration + viscous damping

The general solution to the Eqn. Of motion is:

X(t) = C{e%t +C,e™?!

or
S B S B R
SR | A U A U S | N (R
2m 2m m 2m 2m m
X(t):C]_e +C2€
- k
where C; and C, are arbitrary constants -]
1 AN g ATE ATRITTATY EO Y x
deter mined from the initial conditions. A o R
g -
=




Free single DoF vibration + viscous damping

Critical damping (c.): value of c for which the radical in the general solution is zero:

c. V¥ (kK K Jkm
“C 2 1=0 or C :2m\/7 = 2m = 2+/km
(ij (mj : m o

Damping ratio (£): damping coefficient : critical damping coefficient.
C C cCC
{=— or —="""=(n,
Ce 2m  C, 2m

The roots can be re —written :
2
C C K 5 )
S =——= — | | — | =|-C= -1
127 om \/(ij (mj ( SENVE “n

And the solution becomes :
652 o

(—g“ +\/§T—1)a)nt

x(t)=Cqe +C2e(

The response x(t) depends on the roots s, and s, — the behaviour of the system is dependent
on the damping ratio .



Free single DoF vibration + viscous damping

R ) S G 2
X(t) = Cle
When <1, the system is underdamped. ({?-1) is negative and the roots can be written as:

31:(—§+i\/§)a)n and szz(—g—i@)wn

And the solution becomes :

(—§+i@jwnt
+Coe
(i@)a}nt

+ Cze(

(—44 1—(2)a)nt

(_i@ ja)nt

X(t ) = Cle

X(t)=e "¢t iC,e +C,e

x(t)=e‘§wnt{(C1+CZ)cos( 1—§2a)nt)+i(C1—C2)sin( 1—§2wnt)}
x(t)=e‘5“’”t{c'1(:os( 1—§2a)nt)+C'2 sin( 1—§Za)nt)}
x(t):Xe‘g“’ntsin( 1—./;2a)nt+¢) or x(t):XOe‘g“’“tcos( 1—./,’2a)nt—¢0)

Where C';, C',; X, ¢ and X, ¢, are arbitrary constant determined from initial conditions.



Free single DoF vibration + viscous damping

X(t)=e st {Cl coS (@%t) +C, sin (@wnt)}

For the initial conditions:

X(t=0)=x; and x(t=0)= X
Then
Xo +CwnXg

J1-S2o,

C'l =X, and C'2 =
Therefore the solution becomes

X(t)=e ¢! xocos( l—gza)nt)JrWOsin( 1—§2cont)
1—§2a)n

This represents a decaying (damped) harmonic motion with angular frequency V(1-£2)w, also
known as the damped natural frequency. The factor e<0) causes the exponential decay.



Free single DoF vibration + viscous damping

——————— e ————

Exponentially decaying harmonic — free SDoF vibration with viscous damping .

Underdamped oscillatory motion and has important engineering applications.



Free single DoF vibration + viscous damping

x(t):Xe‘g“’htsin(\/l—gza)nwgé) or x(t):Xoe‘g“’ntcos( 1—§2a)nt—¢o)

The constants ( X ,¢) and ( Xq,¢ ) representing the magnitude and phase become :

= Xo=[c1) + (e

¢ =atan Cl and ¢y =atan —C?
C2 C1




Free single DoF vibration + viscous damping

When £ = 1, c=c_, system is critically damped and the two roots to the eqn. of motion become:

S =5y = C
1=8 =75 ="t

and solution is
X(t)=(Cy +Cyt et

Applying the initial conditions x(t=0)=X, and Xx(t=0)= X, yields
Ci =X
Co =Xg + @ Xy

The solution becomes :

X(t) = [XO +(XO +C()nXO)t]e_wnt

As t—o , the exponential term diminished toward zero and depicts aperiodic motion



Free single DoF vibration + viscous damping

When £ > 1, c>c_, system is overdamped and the two roots to the eqn. of motion are real and

negative:
S Z(—C"'\/Z )a)n <0
S5 =(—§—\/z )a)n <0

with s, // s; and the initial conditions x(t=0) =X, and X(t=0)= X,
the solution becomes :

(—C +\/ﬁ )wnt (—C —\/E jwnt

X(t):C]_e

where
Xo @ (—é”r\/z )+Xo

-I-Cze

C, =
: 20,2 -1

. —Xo@y (—C—V§2—1 )—Xo
)=

20?1

Which shows aperiodic motion which diminishes exponentially with time.



Free single DoF vibration + viscous damping

p Underdamped (£ =0)

/ Overdamped (& > 1)

- Critically Underdamped (£ < 1)
\ Hxhdﬂmped (é’ = I) {'[Il“; I!'\ hl'l"l.illik‘l
Ay — than o,

e e ——

()

% 2z -

Critically damped systems have lowest required damping for aperiodic motion and mass returns to
equilibrium position in shortest possible time.




