
SINGLE DEGREE OF FREEDOM 

(SDOF) SYSTEM 



Free undamped vibration single DoF 

• Recall: Free vibrations  system given initial disturbance and oscillates free of external forces. 

• Undamped: no decay of vibration amplitude 

• Single DoF: 

• mass treated as rigid 

• Elasticity idealized by single spring 

• only one natural frequency. 

 

• The equation of motion can be derived using 

• Newton’s second law of motion 

• D’Alembert’s Principle,  

• The principle of virtual displacements and, 

• The principle of conservation of energy. 
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Free undamped vibration single DoF 

• Using Newton’s second law of motion to develop the equation of motion. 

1. Select suitable coordinates 

2. Establish (static) equilibrium position 

3. Draw free-body-diagram of mass 

4. Use FBD to apply Newton’s second law of motion: 

“Rate of change of momentum = applied force” 

d dx( t )
F( t ) m

dt dt

 
  

 
As m is constant 

2

2

d x( t )
F( t ) m mx

dt
 

For rotational motion 

M( t ) J

For the free, undamped single DoF system  

F( t ) kx mx

or

mx kx 0

  

 
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Free undamped vibration single DoF 

Principle of virtual displacements: 

• “When a system in equilibrium under the influence of forces is given a virtual displacement. The 

total work done by the virtual forces = 0” 

• Displacement is imaginary, infinitesimal, instantaneous and compatible with the system 

 

• When a virtual displacement dx is applied, the sum of work done by the spring force and the 

inertia force are set to zero: 

( kx ) x ( mx ) x 0   

• Since dx  0 the equation of motion is written as: 

kx mx 0 
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Free undamped vibration single DoF 

Principle of conservation of energy: 

• No energy is lost due to friction or other energy-dissipating mechanisms. 

• If no work is done by external forces,  the system total energy = constant 

• For mechanical vibratory systems: 

• Since 

 

KE PE cons tan t

or

d
KE PE 0

dt

 

 

 

2 2

2 2

1 1
KE mx and PE kx

2 2

then

d 1 1
mx kx 0

dt 2 2

or

mx kx 0

 

 
  

 

 
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Free undamped vibration single DoF 

Vertical mass-spring system: 
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Free undamped vibration single DoF 

Vertical mass-spring system: 

• From the free body diagram:, using Newton’s second law of motion: 

st

st

mx k( x ) mg

sin ce k mg

mx kx 0





   



 

mg

• Note that this is the same as the eqn. of motion for the horizontal mass-spring system 

•  if x is measured from the static equilibrium position, gravity (weight) can be ignored 

• This can be also derived by the other three alternative methods. 
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Free undamped vibration single DoF 

• The solution to the differential eqn. of motion. 

• As we anticipate oscillatory motion, we may propose a solution in the form: 

n n

n n

i t i t

n

st

x( t ) Acos( t ) B sin( t )

or

x( t ) Ae Be

alternatively, if we let s i

x( t ) C e

 

 







 

 

 



• By substituting for x(t) in the eqn. of motion: 2

2

n

n

sin ce

Characteristic equation

a

C( ms k ) 0

c 0,

ms k 0

k
s

nd

roots eigenvalues

or

i
m

k

m





 



 

    






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Free undamped vibration single DoF 

• The solution to the differential eqn. of motion. 

• Applying the initial conditions to the general solution: 

( t 0 ) 0

( t 0 ) n 0

initial displacement

initial velo

x A

c yx B x i

x

t





 

 

• The solution becomes: 

n nx( t ) Acos( t ) B sin( t )  

1
2

o
0 n n

n

2
2 0 0 n

0 0
n o

0 n

x
x( t ) x cos( t ) sin( t )

x x
A x a tan

x

x( t

if we let and the

) A sin( t )

n

 







 

 

    
      
     

 

• This describes motion of harmonic oscillator: 

• Symmetric about equilibrium position 

• Thru equilibrium: velocity is maximum & acceleration is zero 

• At peaks and valleys, velocity is zero and acceleration is maximum 

• n = (k/m)  is the natural frequency 
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FREE VIBRATION OF UNDAMPED SINGLE-DEGREE-OF-FREEDOM SYSTEMS 
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Free undamped vibration single DoF 

• Note: for vertical systems, the natural frequency can be written as: 

n

st

n n
st st

k

m

mg
sin ce k

g 1 g
or f

2






  





 
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Free undamped vibration single DoF 

• Torsional vibration. 

• Approach same as for translational system.  Laboratory exercise. 
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Free undamped vibration single DoF 

• Compound pendulum. 

• Given an initial angular displacement or velocity, system 

will oscillate due to gravitational acceleration. 

• Assume rigid body  single DoF 

 

o
n

o

n
o

d

Restoring torque:

Equation of motion :

nonlinear2 order ODE

Linearity is approximated if Therefore

mgd sin

J mgd sin 0

sin

J mgd

:

Natural frequ

0

m

enc

g

y

d

J

:



 

 

 



 












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Free undamped vibration single DoF 

• Stability. 

• Some systems may have inherent instability 
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Free undamped vibration single DoF 

• Stability. 

• Some systems may have inherent instability 

• When the bar is deflected by , 

2

o

2

The spring force is :

The gravitational force thru G is :

The inertial moment about O due to the angular acceleration is :

The eqn.of motion is written as

2kl sin

mg

ml
J

3

ml l
( 2kl sin ) l cos mg sin 0

3

:

2



 

   





  
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Free undamped vibration single DoF 

2
2

2

2

For small oscillations, .Thesin and cos 1

ml mgl
2kl 0

3 2

12kl 3mgl
0

2ml

refore

or

  

  

 

 

  

 
   

 

2

n 2

12kl 3mgl

2ml
 

 
  
 

Single Degree-of-Freedom systems 



Free single DoF vibration + viscous damping 

• Recall: viscous damping force  velocity: 

 



 

     

  





st
n

st

F cx

mx cx kx o

c damping cons tan t or

r mx cx kx

coefficient Ns / m

Applying Newton' s second law of motion to obtain the eqn.of motion :

I

0

x( t )

f the solution is as

Ce where s i

then : x( t ) sCe an

sumed to take the form :

d 

  

      
       

   

 1 2

2 st

2

22

1,2

s t s t
1 1 2 2

Substituting for x, x and x in the eqn.of motion

The root of the characteristic eqn. are :

The two solutions are :

x( t ) s Ce

ms cs k 0

c c 4mk c c k
s

2m 2m 2m m

x ( t ) C e and x ( t ) C e

Single Degree-of-Freedom systems 



Free single DoF vibration + viscous damping 

1 2

2 2

s t s t
1 2

c c k c c k
t t

2m 2m m 2m 2m m

1 2

1 2

or

where C and C are arbitrary cons tants

det er mined from the i

x( t ) C

n

e C

itial conditions

e

x( t ) C

.

e C e

   
          
               

             

 

 

• The general solution to the Eqn. Of motion is: 
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Free single DoF vibration + viscous damping 

2
c

c n
c k k

0 c 2m 2m 2 kmr
2m m m

o 
   

      
  

• Critical damping (cc): value of c for which the radical in the general solution is zero: 

 

2 2
n n

c
n

c c

2
2

1,2 n

1 t 1 t

1 2

cc c c

c 2m c 2m

c c k
s 1

2m 2m m

or

The roots can be re written :

And the solution beco

x( t ) C e C e

mes :

     

 

  

   
        
   

  

   
          

   

 



• Damping ratio ():  damping coefficient : critical damping coefficient. 

• The response x(t) depends on the roots s1 and s2  the behaviour of the system is dependent 

on the damping ratio . 
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Free single DoF vibration + viscous damping 

2 2
n n1 t 1 t

1 2x( t ) C e C e
                

    

• When  <1, the system is underdamped.  (2-1) is negative and the roots can be written as: 

   

        

2 2
n n

2 2
n n

n

n

2 2
1 n 2 n

i 1 t i 1 t

1 2

i 1 t i 1 t
t

1 2

t 2 2
1 2 n 1 2 n

s i 1 and s i 1

x( t ) C e C e

x( t )

And the solution

e C e C e

x( t ) e C C cos 1 t i C C s

bec

in 1 t

x(

omes

t

:

     

   




     

   

   
        
   

   
         



       

 

 
 

  
  

     

    
   

n

n n

t ' 2 ' 2
1 n 2 n

t t2 2
n 0 n o

) e C cos 1 t C sin 1 t

x( t ) Xe sin 1 t or x( t ) X e cos 1 t



 

   

     



 

   

     

Where C’1, C’2;  X,   and Xo, o are arbitrary constant determined from initial conditions. 
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Free single DoF vibration + viscous damping 

    nt ' 2 ' 2
1 n 2 nx( t ) e C cos 1 t C sin 1 t

    
   

• For the initial conditions: 

   n

0 0

' ' 0 n 0
1 0 2

2
n

t 2 20 n 0
0 n n

2
n

Then

Therefore the soluti

x( t 0 ) x and x( t 0 ) x

x x
C x and C

1

x x
x( t ) e x cos 1 t sin 1 t

on becomes

1





 


   

 



   


 



  
    

  

• This represents a decaying (damped) harmonic motion with angular frequency (1-2)n also 

known as the damped natural frequency.  The factor e-( ) causes the exponential decay. 
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d
d

2





Free single DoF vibration + viscous damping 

Exponentially decaying harmonic – free SDoF vibration with viscous damping . 

Underdamped oscillatory motion and has important engineering applications. 

 

nt
Xe


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Free single DoF vibration + viscous damping 

   n nt t2 2
n 0 n ox( t ) Xe sin 1 t or x( t ) X e cos 1 t

       
     

   

0 0

2 2' '
0 1 2

' '
1 2

0' '
2 1

The cons tan ts ( X , ) and ( X , ) representing the magnitude and phase be

X X C C

C C
a tan and a tan

come :

C C

 

 

  

   
     

   
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Free single DoF vibration + viscous damping 

• When  = 1, c=cc , system is critically damped and the two roots to the eqn. of motion become: 

  

n

n

c
1 2 n

t
1 2

0 0

1 0

2 0 n 0

t
0 0 n 0

and solution is

Applying the initial conditions

c
s s

2m

x( t ) ( C C t )e

x( t 0 ) x x( t 0 ) x

C x

C x x

x( t ) x x x t e

and yields

The solution becomes :















    

 

   



 

  

• As t , the exponential term diminished toward zero and depicts aperiodic motion 
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Free single DoF vibration + viscous damping 

• When  > 1, c>cc , system is overdamped and the two roots to the eqn. of motion are real and 

negative: 

 
 

 

 

2 2
n n

2
1 n

2
2 n

2 1 0 0

1 t 1 t

1 2

2
0 n 0

1
2

n

2
0 n 0

2
2

n

with and the initial conditions and

the solution becomes

s 1 0

s 1 0

s s x( t 0 ) x x( t 0 ) x

x( t ) C e C e

x 1 x

C
2 1

x 1 x

C

:

w

2

here

     

  

  

  

 

  

 

           
   

    

    

   

 

   




    


1

Which shows aperiodic motion which diminishes exponentially with time. 
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Free single DoF vibration + viscous damping 

n

2



d

2



Overdamped ( 1) 

Underdamped ( 1) 

Underdamped ( 0 ) 

Critically
damped ( 1) 

Critically damped systems have lowest required damping for aperiodic motion and mass returns to 

equilibrium position in shortest possible time. 
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