AnalySIS of Indeterminate
Beams and Frames by the
Slope-Deflection Metho/d

Introduction

The slope-deflection method is a procedure for analyzing indeterminate
beams and frames. It is known as a displacement method since equilib-
rium equations, which are used in the analysis, are expressed in terms of
unknown joint displacements.

The slope-deflection method is important because it introduces the stu-

dent to the stiffness method of analysis. This method is the basis: of many

general-purpose computer programs for analyzing all types of structures—
beams, trusses; shells, and so forth. In addition, moment distribution—a
commonly used hand method for analyzing beams and frames rapidly—
is also based on the stiffness formulation.

In the slope-deflection method an expression, called the slope-
deflection equation, is used to relate the moment at each end of a mem-
ber both to the end displacements of the member and to the loads applied
to the member between its ends. End displacements of a member can
include both a rotation and a translation perpendxcular to the member’s
longitudinal axis.

Hlustration of the Slope -Deflection Method

To introduce the main features of the slope-deﬂectxon method, we bneﬂy

outline the analysis of a two-span continuous beam. As shown in Figure
12.1a, the structure consists of a single member supported by rollers at
points A and B and a pin at C. We imagine that the structure can be divided
into beam segments AB and BC and joints A, B, and C by passing planes

through the beam an infinitesimal distance before and after each support .
(see Fig. 12.1b). Since the joints are essentially points in space, the
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Joint A

Figure 12.1: (a) Continuous beam with applied
* loads (deflected shape shown by dashed line);
() free bodies of joints and beams (sign conven-
tion: clockwise moment on the end of a member
is positive).
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length of each member is equal to the distance between joints. In this prob-
lem 8,4, 6,, and 6, the rotational displacements of the joints (and also the
rotational displacements of the ends of the members), are the unknowns.
These displacements are shown to an exaggerated scale by the dashed line
in Figure 12.1a. Since the supports do not move vertically, the lateral dis-
placements of the joints are zero; thus there are no unknown joint trans-
lations in this example.

To begin the analysis of the beam by the SIOpe~deﬂect10n method, we
use the slope-deflection equation (which we will derive shortly) to express

“the moments at the ends of each member in terms of the unknown joint
,dlsplacements and the applied loads. We can represent this step by the

following set of equatlons »
Mg = (B4, O Pl)
a = f(04 65 P1)
=f(93» ¢, P2)
= f(65, 8¢, P,)
where the symbol J() stands for a function of.

‘(12.1)
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Section 12.3 Derivation of the Slope-Deflection Equation

We next write equilibrium equations that express the condition that
the joints are in equilibrium with respect to the applied moments; that is,
the sum of the moments applied to each joint by the.ends of the beams

framing into the joint equals zero. As a sign convention we assume that - -

all unknown moments are positive and act clockwise on the ends of mem-
bers. Since the moments applied to the ends of members represent the -
action of the joint on the member, equal and oppositely directed moments
must act on the joints (see Fig. 12.15). The three Jomt equilibrium equa-
tions are

At joint A: M, =0
At joint B: Mgy + Mgc=0 (12.2)
At joint C: Mep =0

‘By substituting Equations 12.1 into Equations 12.2, we produce three
equations that are functions of the three unknown displacements (as well
as the applied loads and properties of the members that are specified).
These three equations can then be solved simultaneously for the values
of the unknown joint rotations. After the joint rotations are computed, we
can evaluate the.- member end moments by substituting the values of the
joint rotations into Equations 12.1. Once the magnitude and direction of
the end moments dre established, we apply the equations of statics to free
bodies of the beams to compute the end shears. As a final step, we com-
pute the support reactions by considering the equilibrium of the joints
(i.e., summing forces in the vertical directiomn).

In Section 12.3 we derive the slope-deflection equation for a typical
flexural member of constant cross section using the moment-area method
developed in Chapter 9.

; Derivation of the Slope Deﬂectlon Equatlon _

To develop the slope deflection equation, which relates the moments at
the ends of members to the end displacements and the applied loads, we
will analyze span AB of the continuous beam in Figure 12.24. Since dif-
ferential settlements of supports in continuous members also create end
moments, we will include this effect in the derivation. The beam, which
is initially straight, has a constant cross section; that is, ET is constant along
the longitudinal axis. When the distributed load w(x), which can vary in
any arbitrary manner along the beam’s axis, is applied, supports A and B
settle, respectively, by amounts A, and A, to points A’ and B’. Figure
12.2b shows a free body of span AB with all applied loads. The moments
M,z and M, and the shears V, and Vj represent the forces exerted by the
joints on the ends of the beam. Although we assume that no axial load
acts, the presence of small to moderate values of axial load (say, 10 to 15
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- initial position

elastic curve

line tangent to elastic curve at B'

simple beam
moment curve

Figure 12.2: (a) Continuous beam wﬁose sup-

ports settle under load; (b) free body of member
AB; (¢) moment curve plotted by parts, M equals
the ordinate of the simple beam moment curve;
(d) deformations of member AB plotted 10 an
exaggerated vertical scale.
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tion. On the other hand, a large compression force would reduce the mem-
ber’s flexural stiffness by creating additional deflection due to the sec-
ondary moments produced by the eccentricity of the axial load—the P-A

- effect. As a sign convention, we assume that moments acting at the ends

‘of members in the clockwise direction are positive. Clockwise rotations
of the ends of members will also be considered positive.

In Figure 12.2¢ the moment curves produced by both the distributed
load w(x) and the end moments M,; and My, are drawn by parts. The
moment curve associated with the distributed load is called the simple
beam moment curve. In other words, in Figure 12.2¢, we are superim-
posing the moments produced by three loads: (1) the end moment Mz,
(2) the end moment My, and (3) the load w(x) applied between ends of
the beam. The moment curve for each force has been plotted on the side
'of the beam that is placed in compression by that particular force.

Figure 12.2d shows the deflected shape of span AB to an exaggerated

- scale. All angles and rotations are shown in the positive sense; that is, all

have undergone clockwise rotations from the original horizontal position

~ of the axis, The slope of the chord, which connects the ends of the mem-

ber at points A" and B’ in their deflected position, is denoted by r,5. To
establish if a chord angle is positive or negative, we can draw a horizon-

tal line through either end of the beam. If the horizontal line must be
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Section 12.3 - Derivation of the Slope-Deflection Equation

rotated clockwise through an acute angle to make it coincide with the chord,
the slope angle is positive. If a counterclockwise rotation is requxred the
slope is negative. Notice, in Figure 12.2d, that ys,5 is positive regardless
of the end of the beam at which if is evaluated. And 6, and 65 represent
the end rotations of the member. At each end of span AB, tangent lines are
drawn to the elastic curve; #45 and 25, are the tangential deviations (the
vertical distance) from the tangent lines to the elastic curve.

To derive the slope-deflection equation, we will now use the second
moment-area theorem to establish the relationship between the member
end moments M, and Mjp, and the rotational deformations of the elastic
curve shown to an exaggerated scale in Figure 12.24. Since the deforma-
tions are small, y,, the angle between the chord and the line tangent to the
elastic curve at point A, can be expressed as
tpa '

Y4 I (12.3a)
Similarly, vy, the angle between the chord and the line tangent to the
elastxc curve at B, equals

tas .
Yo = (12.3b)

Since y4 = 0, — Y and yg = O3 — Y5 we can express Equations
12.3a and 12.3b as '

. ,
— gy = —Z’i - (124a)
t ‘
~ Y4p = -"f- T (12.4b)
where g = éfi%éi (12.4¢)

To express £, and ¢4 in terms of the applied moments, we divide the ordi-
nates of the moment curves in Figure 12.2¢ by EI to produce M/E[ curves
and, applying the second moment-area principle, sum the moments of the
area under the M/EI curves about the A end of member AB to give t,,
and about the B end to glve a4

Mgy L2L My L L (Apx)a

“=Tp 23 mas &m

Myp L2L Mp LL (AyX)z
T el e e D e 2.
MTE 23 E 23 EH (126
The ﬁrst and second terms in Equations'12.5 and 12.6 represent the first
moments of the triangular areas associated with the end moments M5 and
Mp,. The last term—(A,X), in Equation 12.5 and (A,X) in Equation
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460 ~ Chapter 12 = Analysis of Indeterminate Beams and Frames by the Slope-Deflection Method

12.6—represents the first moment of the area under the simple beam
moment curve about the ends of the beam (the subscript indicates the end
of the beam about which moments are taken), As a sign convention, we
assume that the contribution of each moment curve to the tangential
deviation is positive if it increases the tangentjal deviation and negative
if it decreases the tangential deviation.

To illustrate the computation of (A,,x), for a beam carrying a uni-
formly distributed load w (see Fig. 12.3), we draw the simple beam
moment curve, a parabolic curve, and evaluate the product of the area
under the curve and the distance x between point A and the centroid of
the area: :

(Ayx)a = area~x = — —— > ) = 24 12.7)

2L wi? (L) wL*
3 8 24

Figure 12.3: Simple beam moment curve pro-
duced by a uniform load.

Since the moment curve is symmetnc, (Ayx)p equals (A, X),
If we next substitute the values of 7,5 and 4 given by Equations 12.5
and 12.6 into Equations 12.4q and 12.4b, we can write
_1[MpL2L MyLL (AMJ?)A]
"{'“ { El 23 EI 23 El (128
_ 1 Ajﬁ L2L My LL (A;u:‘c)g}
=V = [ El 23 EI 23 EI (12.9)
To establish the slope-deflection equatlons, we solve Equations 12.8 and
12. 9 simultaneously for M s and Mp, to glve

2EI 2(4 A(A,F

Mus = = (284 + 05 = 3ua) + ( I‘;x)A ( Z‘zx)g (12.10)
EI L 4(AyR 2(A, %

My, =Z‘-—(298+ 8, — 3rp) + (Z’;x)’* - (z;x)s 12.11)

In Equations 12.10 and 12.11, the last two terms that contain the quan-
tities (A x)4 and (Ayx)p are a function of the loads applied between ends
of the member only. We can give these terms a physical meaning by using

- Equations 12.10 and 12.11 to evaluate the moments in a fixed-end beam
that has the same dimensions (cross section and span length) and sup-
ports the same load as member AB in Figure 12.2a (see Fig. 12.4). Since
the ends of the beam in Figure 12.4 are fixed, the member end moments
M,p and My, which are also termed fixed-end moments, may be desig-
nated FEM,; and FEMy,. Because the ends of the beam in Figure 12.4 are
fixed against rotation and because no support settlements occur, it fol-
lows that

Figure 12.4 : 6, =0 =10 g =0
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Section 123 Derivation of the Slope-Deflection Equation

Substituting these values into Eqﬁations 12.10 and 12.11 to evaluate
the member end moments (or fixed-end moments) in the beam of Figure

12.4, we can write

) 2 A 4{Apyx ,
FEMyp = Myp = ¢ zix)A (Z; )B - (12.12)
4(Ayx 2(Apx
o = = Mol 20

Using the results of Equations 12.12 and 12. 13, we can write Equatlons
12.10 and 12.11 more simply by replacing the last two terms by FEMAB

and FEMBA to produce

2EI
My = ——(zeA + 0 — 3Pup) + FEM,y (12.14)

MBA == g“EZ (263 + GA 3¢!A3) + FEMSA . (1215)

Since Equations 12.14 and 12.15 have the same form, we can replace them
with a single equation in which we denote the end where the moment is
being computed as the near end (V) and the opposite end as the far end (F).
With thls adjustment we can wnte the slope«deﬂectlon equation as

-

281,
Myp = = (29~ + 8, — 3Yyp) + FEMy,  (12.16)

In Equation 12.16 the proportions of the member appear in the ratio I/L.
This ratio, which is called the relative flexural stiffness of member NF,

is denoted by the symbol K.

1
Relative flexural stiffiness K = Z (1217

Substituting Equatxon 12.17 into Equation 12.16, we can wmte the slope-
deflection equation as :

My = 2EK (26 + 6r —'Sm) +FEMy:  (12.160)

The value of the fixed-end moment (FEM,) in Equation 12.16 or
12.16a can be computed for any type of loading by Equations 12.12 and

. 12.13. The use of these equations to determine the fixed-end moments
produced by a single concentrated load at midspan of a fixed-ended
beam is illustrated in Example 12.1. See Figure 12.5. Values of fixed-end
moments for other types of loading as well as support displacements are

also gwen on the back cover,
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Figure 12.5: Fixed-end moments.

EXAMPLE 12.1 8 Using '@uatidns 12.12 and 12,13, Acompute the ﬁkéd-énd moments pro-
duced by a concentrated load P at midspan of the fixed-ended beam in
- Figure 12.6a: We know that EI is constant.

Solution S ‘ o '

Equations 12.12 and 12.13 require that we compute, with respect to both
ends of the beam in Figure 12.64, the moment of the area under the sim-
ple beam moment curve produced by the applied load. To establish the
simple beam moment curve, we imagine the beam AB in Figure 12.6a is
removed from the fixed supports and placed on a set of simple supports,
as shown in Figure 12.6b. The resulting simple beam moment curve pro-
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Section 124 Analysis of Structures by the Siope-Deflection Method 463

duced by the concentrated load at Imdspan is shown in Figure 12.6c. Since
the area under the moment curve is symmetnc

- PL PL
(Apx)s = (Ayx)s = 4 ( 2) 16
Using Equation 12.12 yields
2(Ayx 4{Ayx
FEM,p = (le)é" (LMZ)B . ' I

-2 (B ()
I\ 16 I*\ 16

_PL  (the minus sign indicates a

8 counterclockwise moment) = Ans. )
Using Equation 12.13 yields PL

4AuT)s 20455

FEM,, = 17 I
- @
4 (PL*\ 2 (PL PL , : ;
= 'E (—l—é—> I ( 16 ) +~§- | clockwise Ans. Figure 12.6 -

-------

12.4 - Analysis of Structures by the
Slope-Deflection Method |

Although the slope-deflection method can be used to analyze any type of

-indeterminate beam or frame, we will initially limit the method to inde-
terminate beams whose supports do not settle and to braced frames
whose joints are free to rotate but are restrained against the displace-
ment—restraint can be supplied by bracing members (Fig. 3.23g) or by
supports. For these types of structures, the chord rotation angle ¥y, in
Equation 12.16 equals zero. Examples of several structures whose joints
do not displace laterally but are free to rotate are shown in Figure 12.7a
and b. In Figure 12.7a joint A is restrained against displacement by the
fixed support and joint C by the pin support. Neglecting second-order
changes in the length of members produced by bending and axial defor-
mations, we can assume that joint B is restrained against horizontal dis-
placement by member BC, which is connected to an immovable support
at C and against vertical displacement by member AB, which connects to
the fixed support at A. The approximate deflected shape of the- loaded
structures in Fxgure 12 7 is shown by dashed lines.
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Analysis of Indeterminate Beams and Frames by' the Slope-Deﬂection Method

Figure 12.7b shows a structure whose configuration and loading are
symmetric with respect to the vertical axis passing through the center of
member BC. Since a symmetric structure under a symmetric load must
deform in a symmetric pattern, no lateral displacement of the top joints
can occur in either direction.

Figure 12.7c and d shows examples of frames that contain joints that

" are free to displace laterally as well as to rotate under the applied loads.

Under the lateral load H, joints B and C in Figure 12.7¢ displace to the
right, This displacement produces chord rotations ¢ = A/h in members
AB and CD. Since no vertical displacements of joints B and C occur—
‘neglecting second-order bending and axial deformations of the columns—
‘the chord rotation of the girder 5. equals zero. Although the frame in
Figure 12.7d supports a vertical load, joints B and C will displace later-
ally to the right a distance A because of the bending deformations of
members AB and BC. We will consider the analysis of structures that
contain one or more members with chord rotations in Section 12.5.

The basic steps of the slope-deflection method, which were discussad
in Section 12.2, are summarized briefly below:

Summary

1. Identify all unknown joint dlsplacements (rotatlons) to estabhsh the -

number of unknowns.

2. Use the slope-deflection equation (Eq. 12.16) to express all member
end moments in terms of joint rotations and the applied loads.

3. At each joint, except fixed supports, write the moment equilibrium
equation, which states that the sum of the moments (applied by the
members framing into the joint) equals zero. An equilibrium equation
at a fixed support, which reduces to the identity 0 = 0, supplies no
useful information. The number of equilibrium equations must equal
the number of unknown displacements.

As a sign convention, clockwise moments on the ends of the
members are assumed 10 be positive. If a moment at the end of a
member is unknown, it must be shown clockwise on the end of a
member. The moment applied by a member to a joint is always
equal and opposite in direction to the moment acting on the end of
the member. If the magnitude and direction of the moment on the
end of a member are known, they are shown in the actual direction.

4. Substitute the expressions for moments as a function of

displacements (see step 2) into the equilibrium equations in step 3,
and solve for the unknown dlsplacements

Figure 12.7: (a) All joints restrained against displacement; all chord rotations ¢ equel
zero; (b) due to symmetry of structure and loading, joints free to rotate but not translate;
chord rotations equal zero; (¢) and (d) unbraced frames with chord rotations.
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Section 124 Analysis of Structures by the Slope-Deflection Method 465

5. Substitute the values of displacement in step 4 into the expressions
for member end moment in step 2 to establish the value of the
member end moments. Once the member end moments are known,
the balance of the analysis—drawing shear and moment curves or
computing reactions, for example—is completed by statics.

Examples 12.2 and 12.3 illustrate the procedure outlined above.

Using the slope-deflection method, determine the member end moments in
the indeterminate beam shown in Figure 12.8a. The beam, which behaves
elastically, carries a concentrated load at midspan. After the end moments
are determined, draw the shear and moment curves. If 7 = 240 in*and E =
30,000 kips/in®, compute the magnitude of the slope at joint B.

T X T VEA

11ki

~54 Kip-ft

K e e - | STR R - i ST SN

EXAMPLE 12.2

Figure 12.8: () Beam with one unknown dis-
placement ; (b) free body of beam AB; unknown
member end moments M,z and Mz, shown clock-
wise; (¢) free body of joint B; (d) free body used
to compute end shears; (¢) shear and moment
curves,

[continues on next page]
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Example 12.2 continues . . .

- Analysis of Indeterminate Beams and Frames by the Slope-Deflection Method

Solution

Since joint A is fixed agamst rotation, 8 = (; therefore, the only unknown
displacement is 6, the rotation of joint B (yr4p is, of course, zero since no
support settlements occur). Using the slope-deflection equation

2E1
My = N (205 + 8r — 3¢yr) + FEMy;  (12.16)

and the values in Figure 12.54 for the fixed-end moments produced by a

concentrated load at midspan, we can express the member end moments
shown in Figure 12.8b as

2ET L
My = 2 (93) - f— <1>

2EI PI,
Mp, = T (205) + 3 : 2

To determine 65, we next write the equation of moment equilibrium
at joint B (see Fig. 12;80): ‘ '

Q+ EM B = 0
- =0 ENON
Subsututmg the value of MBA glven by Equanon 2 into Equamon 3 and

- solving for 0, give .

AE] PL
i el =
L 05 8
‘ PL?
0z = — 32L1 “4)

where the minus sign indicates both that the B end of member AB and
joint B rotate in the counterclockwise direction. To determine the mem-

ber end moments, the value of 85 given by Equation 4 is substituted into
Equations 1 and 2 to give

2EI { —PL? PL 3PL
()22

—— ) - == - = —54Kip- Ans
L \32E) 8 6 - Otkipit  An

- _4EI{ -PL? PL

MB""L(32§1)+8'0'

Although we know that My, is zero since the support at B is a pin, the
computation of My, serves as a check.

To complete the analysis, we apply the équations of statics to a free
body of member AB (see Fig. 12.84).

e A
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Section 124 Analysis of Structures by the Slope-Deflection Method

CFf IM, =0
0 = (16 kips)(9 ft) — Vja (18 ft) — 54 kipft
Vas = Skips N
- EF), =
0=V + Vg — 16
Vg = 11 kips

To evaluate 05, we express all variables in Equation 4 in units of inches
and kips. ' ‘

P2 16(18 X 12)* 0.0032 rad
32E1 . 32(30,000)240 oo

Expressing 6y in degrees, we obtain
247 rad _ -0.0032
360° By
9, = —0.183°  Ans.

Note that the slope 05 is extremely small and not discernible to the
paked eye. .

BB=

NOTE. When you analyze a structure by the slope-deflection method,
you must follow a rigid format in formulating the equilibrium equations.
There is no need to guess the direction of unknown member end moments
since the solution of the equilibrium equations will automatically pro-
duce the correct direction for displacements and moments, For example,
in Figure 12.85 we show the moments M,z and Mp, clockwise on the
ends of member AB even though intuitively we may recognize from a
sketch of the deflected shape in Figure 12.84 that moment M,z must act
in the counterclockwise direction because the beam is bent concave
downward at the left end by the load. When the solution indicates M,z is
—54 kip-ft, we know from the negative sign that M, actually acts on the
end of the member in the counterclockwise direction.

467

Using the slope-deflection method, determine the member end moments
in the braced frame shown in Figure 12.9a. Also compute the reactions

at support D, and draw the shear and moment curves for members AB
and BD. B

EXAMPLE 12.3

[continues on next pagel
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~Example 12.3 continues . . .

Figure 12.9: (a) Frame details; (b) joint D; I=120in*
(¢) joint B (shears and axial forces omitted for
clarity); (d) free bodies of members and joints
used to compute shears and reactions

(moments acting on joint B omitted for clarity).

(@)

&

v w =2 kips/ft
A, =143 kips A8

Ll

62.57 kip-ft 36.86 kip-ft
! 18’ |
19.43 kips
 16.57 kips
31.81 kip-ft
36.86 kip+ft

62.57 kip-ft

468

- TR e e - [ S

VeA 4 =143 kips 143 kips_*_»

¢

M= 24 kipft

1 MBC =24 kip'ft

©

Ly V=6ki
BA B ps

|

‘ Vyp = 1.43 kips
- F=22.57kips

P =6 kips

V=6 kips ,
. 4

24 kip-ft

F=2257 kips
k Vgp = 1.43 kips

12.86 kip-ft 12.86 kip-ft

. D,=143kips 1.43kips

T ) v M
Dy=2257 kips
d)
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Analysis of Structures by the Slope-Deflection Method 469

Solution : _
Since 8, equals zero because of the fixed support at A, bz and OD are the
only unknown joint displacements we must consider. Although the
moment applied to joint B by the cantilever BC must be included in the
joint equilibrium equation, there is no need to include the cantilever in
the slope-deflection analysis of the indeterminate portions of the frame
because the cantilever is determinate; that is, the shear and the moment
at any section of member BC can be determined by the equations of stat-
ics. In the slope-deflection solution, we can treat the cantilever as a
device that applies a vertical force of 6 kips and a clockw1se moment of
24 kip-ft to joint B.
Using the slope-deflection equation

2E1

Myp = m(29~ + 6 — 3yr) + FEMyr  (12.16)

where all variaBles are expressed in units of kip:inches and the fixed-end
moments produced by the uniform load on member AB (see Fig. 12.5d)
equal

FEMAB = "'TZ'—

Wit
12
we can express the member end moments as

2E(120) 2(18)%(12)
= T52) 98 T T
2E(120) 2(18)2(12)
B4 T 18(12) (205) + — 12
2E(60)
= "9(12)
2E(60)
08 = 9(12)

To solve for the unknown joint displacements 8; and 85, we write
equilibrium equations at joints D and B.

FEMj, = +

= 1.11Ef, — 648 (1)

= 2.22E65 + 648 (2)’

(293 + 8,) = 2.22E0, + 1.11E6, A3)

(26, + 93) =2.22E0, + 1.11E8, (&)

At joint D (see Fig. 12.9b):

At joint B (see Fig. 12.9¢):

+D EMD=0

=0 ()

Yy EMp=0
Mg, + My, — 24(12) = 0

(6

[continues on next page]
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470 Chapter 12 Analysis of Indeterminate Beams and Frames by the Siope-Deﬂection Method

Example 12.3 continues . . .

Since the magnitude and direction of the moment My at the B end of the
cantilever can be evaluated by statics (summing moments about point B),
it is applied in the correct sense (counterclockwise) on the end of mem-
‘ber BC, as shown in Figure 12.9¢. On the other hand, since the magni-
tude and direction of the end moments My, and My, are unknown, they
are assumed to act in the positive sense—clockwise on the ends of the
members and counterclockwise on the joint.

Using Equations 2 to 4 to express the moments in Equations 5 and 6
in terms of displacements, we can write the equilibrium equations as

Atjoint D: 2.22E6, + 1.11E8, = 0 (7)
Atjoint B: (2.22E6, + 648) + (2.22E6, + 1.11E0,,) — 288 = 0 (8)

Solving Equations 7 and 8 simuitaneously gives

' 46,33
Op = E
92.66
By = "_—E— .

To establish the values of the member end moments, the values of 6 and
6 above are substituted into Equations 1, 2, and 3, giving

' 92.66
LIIE(—- E) 648

—750.85 kip-in = —62.57 kip-ft Ans.

My, = 2.225(» &;6-) + 648

= 442.29 kip<in = +36.86 kip-ft Ans.

= —15428 kipin = —12.86 kipft  Ans.

Now that the member end moments are known, we complete the analy-
sis by using the equations of statics to determine the shears at the ends
of all members. Figure 12.94d shows free-body diagrams of both mem-
bers and joints: Except for the cantilever, all members carry axial forces
as well as shear and moment. After the shears are computed, axial forces
and reactions can be evaluated by considering the equilibrium of the
joints. For example, vertical equilibrium of the forces applied to joint B
requires that the vertical force F in column BD equal the sum of the’
shears applied to joint B by the B ends of members AB and BC.

I
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Use of Symmetry to Simplify the Analy51s of a Symmetnc
Structure with a Symmetric Load

Determine the reactions and draw the shear and moment curves for the
colurmns and girder of the rigid frame shown in Figure 12.10a. Given:
Lig = Icp = 120 in%, Iz = 360 in*, and E is constant for all members.

Solution

Although joints B and C rotate, they do not displace laterally because both
the structure and its load are symmetric with respect to a vertical axis of
symmetry passing through the center of the girder. Moreover, 6, and 6
are equal in magnitude; however, 8, a clockwise rotation, is positive,

w =2 kips/ft

| 30/
(@)
V=30 kips w = 2 kips/ft V=30 kips 30 kips ’
l ; - l + V=781 kips
/1B ct A 8333 kip-ft
83.33 kip-ft 83.33 kip-ft /;}
1 30" N 3
. 163
30 kips - e
A =781 kxps Z A
shear -
\T/ 4167 kip+t
-30 kips )
141.67 kip-ft A, =30 kips-
moment
-83.33 kip-ft ~83.33 kip»ft
e)
[ TR VI, ‘ C B e - - i _STR

EXAMPLE 12.4

)

78l kips  83.33 kip-ft

/

41,67 kip-ft
moment

shear

Figure 12.10: (a) Symmetric structure and load;
(b) moments acting on joint B (axial forces and
shears omitted); (¢) free bodies of girder BC and
column AB used to compute shears; final shear
and moment curves also shown.

[continues or next page]
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|

l

 Example 12.4 continues . . ~and @, a counterclockwise rotation, is negative. Since the problem con-
‘ : : tains only one unknown joint rotation, we can determine its magnitude
by writing the equilibrium equation for either joint B or joint C. We will

arbitrarily choose joint B.

Expressing member end moments with Equation 12. 16 reading the
vélue of fixed-end moment for member BC from Figure 12.5d, express-
ing units in kips-inch, and substituting 8 = 6 and 6 = —6, we can write

My = 2£(120) (65) = 1.25E6 o (n
AR 1e(12) VBT TR , ‘
2E(120) (2685) = 2.50E6 o 2
BA = 16(12) B -~ B ( )
2E(360) wL?
= —" (20, + —
2(30)%(12
= 2E[28 + (—6)] — __%ﬁ_) = 2E6 — 1800 (3)
Writing the equilibrium etiua&ion at joint B (see Fig. 12.10b) yields
Mps + Mpc=0 C)
Substituting Equations 2 and 3 into Equation 4 and solving for 8 produce
2.5E@ + 2.0E6 — 1800 =0
400
°=F ®
Substituting the value of 8 given by Equauon 5 into Equations 1, 2, and
3 gives
400
My =1 25E< E )
= 500 kip-in = 41.67 kip-ft Ans.
400 '
=2,
= 256(42)
= 1000 kip+in = 83.33 kip-ft Ans,
E .
= —1000 kip-in = —83.33 kip-ft counterclockwise Ans.
The final results of the analysis are shown in Figure 12.10¢.
- C B D e - ;K'u . - N M - UK e -
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Using symmetry to simplify the slope-deflection analysis of :th_e frame in
Figure 12.11q, determine the reactions at supports A and D.-

Solution - L

Examination of the frame shows that all joint rotations are zero. Both 8,
and 6 are zero because of the fixed supports at A and C. Since column
BD lies on the vertical axis of symmetry, we can infer that it must remain
straight since the deflected shape of the structure with respect to the axis
of symmetry must be symmetric, If the column were to bend in either
direction, the requirement that the pattern of deformations be symmetric

P =16 kips

40 kipft 2

8 kips

8 kips

40 kip-ft

T

=

40 kip-ft

()]

EXAMPLE 12.5

Figure 12.11: (a) Symmetric frame with sym-
metric load (deflected shape shown by dashed
line); (b) free body of beam AB, joint B, and col-
umn BD. Final shear and moment diagrams for

beam AB.

[continues on next page)
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‘Example 12.5 continues . . .

would be violated. Since the column remains straight, neither the top nor
bottom joints at B and D rotate; therefore, both 6, and 6, equal zero,
Because no support settlements occur, chord rotations for all members are
zero. Since all joint and chord rotations are zero, we can see from the
slope-deflection equation (Eq. 12.16) that the member end moments at
each end of beams AB and BC are equal to the fixed-end moments PL/8
given by Figure 12.5a:

PL  16(20)

mm A e I
FEM ~ 8 8

Free bodies of beam AB, joint B, and column BD are shown in Figure 12.11.

= 40 kip+ft

NOTE. The analysis of the frame in Figure 12.11 shows that column BD
carries only axial load because the moments applied by the beams to each
side of the joint are the same. A similar condition often exists at the inte-
rior columns of multistory buildings whose structure consists of either a
continuous reinforced concrete or a welded-steel rigid-jointed frame.
Although a rigid joint has the capacity to transfer moments from the

beams to the column, it is the difference between the moments applied

by the girders on either side of a joint that determines the moment to be
transferred. When the span lengths of the beams and the 1oads they sup-

port are approximately the same (a condition that exists in most build-

ings), the difference. in moment is small. As a result, in the preliminary
design stage most columns can be sized accurately by considering only

-.the magnitude of the axial load produced by the grav1ty load from the

tributary area supported by the column.

EXAMPLE 12.6

Determine the reactions and draw the shear and moment curves for the
beam in Figure 12.12. The support at A has been accidentally constructed
with a slope that makes an angle of 0.009 rad with the vertical y-axis
through support A, and B has been constructed 1.2 in below its intended
position. Given: EI is constant, I = 360 in*, and E = 29,000 kips/in®.

Solution
The slope at A and the chord rotation 4z can be determined from the

information supplied about the support displacements. Since the end of

the beam is rigidly connected to the fixed support at A, it rotates coun-
terclockwise with the support; and 8, = —0.009 rad. The settlement of

~ support B relative to support A produces a clockwise chord rotation

A 1.2
Yup = - M 0.005 radians
L :"1‘; Y - I e -

P VOO P
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Angle 6 is the only unknown displacement, and the fixed-end moments
are zero because no loads act on beam. Expressing member end moments
with the slope-deflection equation {Eq. 12.16), we have A

2EI
M = T2 (20, + 0 = o) + FEMAB
AB
2E(360) .
= + 65 — 005
o= ooz (2(-0009) + 6, ~ 30009)] (D)
2E(360)
§ = + (—0. - 3(0.005
Writing the equilibrium equation at joint B yields
O M =0

Mg, =0 3
‘Substituting Equation 2 into Equation 3 and solving for 6p yield
3E(20; — 0.009 — 0.015) = 0
85 = 0.012 radians
To evaluate M, substitute 8, into Equation 1:
M 4z = 3(29,000)[2(—0.009) + 0.012 — 3(0.005)]
= —1827 kiprin = —152.25 kip-ft

Coinplete the analysis by using the equations of statics to compute the
reaction at B and the shear at A (see Fig. 12.125).

G =M, =0
0 = Rz(20) — 152.25
Ry = 7.61 kips Ans.
. .
+ EFy =0
Va4 = 7.61 kips

84 =~0.009 rad

L L=20 |

{a)

V= 7.61 kips

q

152,25 kip+ft

Ry=1.61 kips
)]

7.61 kips

~152.25 Kip-ft
©

Figure 12.12: (@) Deformed shape; (b) free
body used to compute V, and Ry; (c) shear and
moment Curves.

Although the supports are constructed in their correct posumn, girder AB
of the frame shown in Figure 12.13 is fabricated 1.2 in too long. Deter-
mine the reactions created when the frame is connected into the supports.
Given: EI is a constant for all members, ] = 240 in*, and E = 29,000
kips/in2,

EXAMPLE 12.7

[continues on next page)
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Example 12.7 continues . . .

| 18’ |

(@
5.96 kips 5.96 kips . 5.96 kips
95kips  7.95ki 6
: 7.95 kips — T 61_95 kips DS l v
| ‘ Bl #\ / :
| 35.76 kip-ft 71.58 kip-ft 71.58 kipsft i .
o «—7.95 kips
: oo : : L 71.58 kip-ft \1/
© 35.76 kip-ft ‘ 598 ki
5.96 kips
. 71.58 kip+ft /l\
71.58 kip-ft 7.95 kips —p» 7158 kipeft

Figure 12.13: (g) Girder AB fabricated 1.2 in
too long; (B) free-body diagrams of beam 4B,
joint B, and column BC used to compute internal : :
forces and reactions. ) )

Solution ‘ o
‘The deflected shape of the frame is shown by the dashed line in Figure
12.13a. Although internal forces (axial, shear, and moment) are created
when the frame is forced into the supports, the deformations produced by
these forces. are neglected since they are small compared to the 1.2-in
fabrication error; therefore, the chord rotation /5¢ of column BC equals
A 12 1
Ve =T =5y "0
Since the ends of girder AB are at the same level, 45 = 0. The unknown
displacements are 85 and 6.

cIE - - - TN e - T e - - U B -




Section 12.5  Analysis of Structures That Are Free to Sidesway 477
Using the slope-deflection equation (Eq. 12.16), we express member
end moments in terms of the unknown displacements. Because no loads
are applied to the members, all fixed-end moments equal zero.
2E(240) U
B = W (05) = 2.222E85. . IO
2E(240)
A = W (203) = 4.444E0, 2
oo = 20 o5, 5(L)]
9(12) B¢ 90
= 8.880E0, + 4.444E9, — 0.1481E 3)
2E(240) 1
o = T |20+ 0 - (2]
= 8.889E6 + 4.444E0; — 0.1481E - ' @
Writing equilibrium equations gives
Joint C: : . Mp=0 &)
Joint B: Mgy + Mge=0 - ()
Substifuting Equations 2 to 4 into Equations 5 and 6 solving for 6 and -
B¢ yield
8.880E0, + 4.444E6, — 0.1481E =0
4.444F6, + 8.889Ef, + 4.444E0, — 0.1481E = 0
0z = 0.00666 rad )
0c = 0.01332 rad ®)
Substituting 6. and 65 into Equations 1 to 3 produces
M, p = 35.76 kip-ft Mg, = 71.58 kip-ft Ans.
Mg = —71.58 kip-ft Mp=0 '
The free-body diagrams used to compute internal forces and reactions are
shown in Figure 12.135, which also shows moment diagrams.
" Analysis of Structures That Are Free to Sidesway
Thus far we have used the slope-deflection method to analyze indetermi-
nate beams and frames with joints that are free to rotate but which are
restrained against displacement. We now extend the method to frames
A e o - me o - m oo - e a
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)]

Figure 12.14: (@) Unbraced frame, deflected
shape shown to an exaggerated scale by dashed
lines, column chords rotate through a clockwise
angle s, (b) free-body diagrams of columns and
girders; unknown moments shown in the positive
sense, that is, clockwise on ends of members
(axial loads in columns and shears in girder omit-
ted for clanty)

- “RCR Ve L

whose joints are also free to sidesway, that is, to displace laterally. For
example, in Figure 12.14a the horizontal load results in girder BC dis-
placing laterally a distance A. Recognizing that the axial deformation of
the girder is insignificant, we assume that the horizontal displacement of
the top of both columns equals A. This displacement creates a clockwise
chord rotation ¢ in both legs of the frame equal to

h

where £ is the length of column.

Since three independent displacements develop in the frame [i.¢., the
rotation of joints B and C (0 and 6.) and the chord rotation /], we
require three equilibrium equations for their solution. Two equilibrium
equations are supplied by considering the equilibrium of the moments
acting on joints B and C. Since we have written equations of this type in
the solution of previous problems, we will only discuss the second type
of equilibrium equation—the shear eqguation. The shear equation is
established by summing in the horizontal direction the forces acting on
a free body of the girder. For example for the girder in Figure 12.145 we
can write

nad ’EFX =0
Vi+V,+0=0 (12.18)

In Equation 12.18, Vy, the shear in column AB, and V., the shear in col-

‘umn CD, are evaluated by summing moments about the bottom of each
column of the forcés acting on a free body of the column. As we estab-
lished previously, the unknown moments on the ends of the column must
always be shown in the positive sense, that is, acting clockwise on the
end of the member. Summing moments about point A of column AB, we
compute Vy:

ot M, = 0
MAB + MBA - Vj{}z“‘—: ¢
My + M
= P = (12.19)

Similarly, the shear in column CD is evaluated by summing moments
about point D.

o SMp =0
MCD + MDC - Vzh =0
Moy + M
Vy = =2 (12.20)
(ST SN - C WK e - ' - (E TR
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Substituting the values of V; and V, from Equations 12.19 and 12.20 into
Equation 12.18, we can write the third equilibrium equation as

Myp + Mp, + Mep + Mpe
Ao h
Examples 12.8 and 12.9 illustrate the use of the slope—deﬂection method
to analyze frames that carry lateral loads and are free to sidesway. Frames
that carry only vertical load will also undergo small amounts of sidesway

unless both the structure and the loading pattern are symmetric, Exam-
. ple 12.10 illustrates this case,

-+ Q (12.21)

Analyze the frame in Figure 12.15a by the slope-deflection method. Eis EXAMPLE 12.8
constant for all members. : : ,

Lipg = 240in*  Iyo= 600in*  [cp = 360in*
Solutton

Identlfy the unknown dlsplacements B, O, and A. Express the chord rota-
tions /45 and cp in terms of A: :

A A

. Wag = ‘1‘5 and Yep =5 80 Yap = LScp (1)

18 Figure 12. 15 (a) Detaxls of frame (b) reactions
and moment diagrams.

21.84 kip-ft

SR 16.76 kipeft

16,76 kip-ft

2184kipft

6 kips 6 kips -

1o liA 6=0 26.45 kipft \l/ 26.45 kip-ft
Ty Kips ),_,1,;"1':17 kips v
’ 18.7 kip-ft :
\T-/ 18.7 kip-ft
. oo 2.57 kips :
(@ ()]

[continues on next page]
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Example 12.8 continues . . . ‘ Compmé the relafive bending stiffness of all members;
| Kup = % = %@ = 20E
Ky = %{ ='% = 40E
Rep= B 0

If we set 20E = K, then
Kiyp=K  Kpc=2K K=K @

Express member end moments in terms of displacements with slope-
deflection equation 12.16: Myy = (2EI/LY(20y + 65 — 3y + FEMyp.
Since no loads are applied to members between joints, all FEMyy = 0.

, Mup = 2Kp5(05 — 3Y14p) ‘
My, = 2K,5(205 — 3,5)
Myc = 2Kpc(205 + 6)
My = 2Kpc(20c + 65) | )
Mcp = 2Kp(20¢ — 3¢cp)
Mpc = 2Kep(8c — 3¢¥cp)

In the equations above, use Equations 1 to express 5 in terms of /¢y, and
use Equations 2 to express all stiffness in terms of the parameter K.

- Myp = 2K (05 — 4.5¢1cp)
Mps = 2K(205 — 4.51//CD)
. Mpge = 4K(205 + 6¢). :
Ma=ak@oc+e) @
Mep = 2K(26 - 3‘1’@1))
Mpc = 2K(8¢ - ﬁ3lf”czv>) |

The equilibrium equations are:

Toint B: Mgy + Mpe =0 ()
Joint C: Mg+ Mo =0 (6)
Shear equation Mgy + Mug Moy + M ‘
quation BA AB cb oc 6 =0 )
(see Eq. 12.21): 12 18
‘ ES “STIN ’ WA A - . "’“'ﬁ; - VG ‘
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Substitute Equations 4 into Equations 5, 6, and 7 and combine terms.

126, + 460 — Wep =0 (Ga)
465 + 120, — 6Ycp = O (6a)
965 + 60¢ ~ o = ~ o o
Solving the equations above simultaneously gives
93'——2%(51 90“%1‘ QZ’CD:%
Also, ' s = 150 = 20 |

K

Since all angles are positive, all ]omt rotations and the 31desway angles
are clockwise.

Substituting the values of displacement above into Equations 4, we
establish the member end moments.

Mg = —2645kipft My, = —21.84 kip-ft Ans. -
Mg = 2184 kipft =~ Mg = 16.78 kip-ft
Mcp = —16.76kipft ~ Mpc = —18.7 kip-ft

The final results are summarized in Figure 12.15b.

Analyze the frame in Figure 12.16a by the slope-deﬂecnon method. leen EXAMPLE 12.9
El is constant for all members.

Solution : ' '
Identify the unknown displacements; 8y, 0., and ¢,5. Since the cantilever
is a determinate component of the structure, its analysis does not have to
be included in the slope-deflection formulation. Instead, we consider the
cantilever a device to apply a vertical load of 6 kips and a clockwme
moment of 24 kip-{t to joint C.

Express member end moments in terms of displacements with Equa-
tion 12.16 (all units in kjp-feet). )

2ET 38)°
Mgy = —— (@s 3ipap) =
12
- 2EI 3(8)°
Mpy = ""(233 3¢as) + 12 (1)*
*Two additional equations for M. and MCB on page 468. o V [continues on next page]
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Example 12.9 continues . . . ‘
2 kips/ft

3 kipsfit

(?A—- 0 I 12¢ : 6! (b)

2 kips/ft

Figure 12.16: (g) Details of frame: rotation of
chord .5 shown by dashed line; (b) moments
acting on joint B (shear and axial forces omitted
for clarity); {¢) moments acting on joint C (shear
forces and reaction omitted for clarity); (d) free
body of column AB; (¢) free body of girder used
to establish third equilibrium equation.

- 2EI,
Mpe = — (205 + 6,)
12
@) ' ‘
. 2EI
Mep = —(20¢ + 65)
12
Write the joint equilibrium equations at B and C.
Joint B (see Fig. 12.16b):
; +O EM3=O: MBA+MBC=O (2}
Joint C (see Fig. 12.16¢c): N '
' ‘ YO EMe=0: Mg -24=0 (3)
' Shear equation (see Fig. 12.16d):
CY EM, =0 Mg, + My +24(4) — V,(8) =0
: Mg, + M,y + 96
solving for V, gives  V; = e SAB : (4a)
Isolaté the girder (See Fig. 12.16¢) and consider equilibrium in the
horizontal direction.
—+ 2F,=0: therefore V,= 0 (4b)
e ae * aa . ® aoa . N
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Substitute Equation 4a into Equation 4b: )
Mps + My +96=0 4
Express equilibrium equations in terms of displacements by substituting
Equations 1 into Equatlons 2,3, and 4. Coﬂectmg terms and simplifying,
we find P
192
144
93 - 26C - EI v
384
Solution of the equations above gives
5333 © 4533 90.66
o= b Tm VwTTg
Establish the values of member end moments by subsututmg the val-
ues of 85, B¢, and 4,5 into Equations 1. »
2E1[53.33 (3)(90-66)} :
= - — 16 = —70.67 kip-ft
Mas =3 [ EI EI P
2EIT (2)(53.33)  (3)(90.66) } o
-=— - + 16 = —23.33 kipt
2Ty [ EI EI P
‘ 2EI [ (2)(53.33) 45.33] shear
Mye = — + = 25.33 kip-ft i
572 [ EI El P (kips)
2EI[ (2)(45.33)  53.33 } . moment
Mg = — + = 24 Kip-ft (kip-ft)
Mes =5 [ El EI P
After the end moments are established, we compute
the shears in all members by applying the equations
of equilibrium to free bodies of each member. Final
results are shown in Figure 12.16f.
24 k;pé ?06? e
- kip-ft \i/M =70.67 kip+t
shear moment .
Figure 12.16: (f) Reacuons and shear and . 4.11kips
morment curves, ’ )
- S - - AR D - Y (O VY :"‘\;
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EXAMPLE 12.10

—, —V,

Myp I Mﬂtp

BRG]

Figure 12.1 7 (&) Unbraced frame‘vpositive chord
rotations assurned for columns (see the dashed
lines), deflected shape shown in (d); (b) free bodies

of columns and glrder used to establish the shear - -

equation.

Analyze the frame in Figure 12.17a by the slope-deflection method. Deter-
mine the reactions; draw the moment curves for the members, and sketch
the deflected shape. If I = 240 in* and E = 30,000 kips/in?, detenmne
the horizontal dxsplacement of joint B,

Solution ,
Unknown displacements are 85, 8, and ¢r. Since supports at A are fixed,
8, and 8, equal zero. There is no chord rotation of girder BC.

Express member end moments in terms of displacements with the
slope-deflection equation. Use Figure 12.5 to evaluate FEMy;.

2EI
MNF '—(261\7 + 6}7 3¢‘NF) + FEMNF (12.16)
Pbla  12(30)2(15) Pa’h _ 12(15)%(30)
FEMye === = (45)? FEMep =757 = (45)?
= —80 kip-ft - =40kipft
To simplify slope-deflection expressions, set EI/15 = K.
ZEI
Mip="5(0,=39)  =2K(6;— 30)
4 2151 | |
2EI M
2E1
Mep = 73 (29c - 3',1') = 2K(0c — 3¢)
2EI L
- Mpc = (ec - 3i) = 2K(0c — 3y)
The equilibrium equations are: ‘
Joint B: Mpy + Mpc=0 @
Joint C: Meg + Mcp =0 ‘ ©)
Shear equation (see the girder in Fig. 12.17b):
=+ XF, =0 Vi+V,=0 (4a)
B e e - N e -« ‘m
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Mgy + Mg Mep + Mpe
h = = 4b
where Vi 5 V2 15 (4b). ,
Substituting V; and V, given by Equations 4 into 4a gives
o MBA+MAB+MCD+MDC‘O N CO
A]temanvely, we can set Q = 0 in Equation 12.21 to produce Equatlon 4,
Express equilibrium equations in terms of displacements by substi-
tuting Equations 1 into Equatxons 2, 3, and 4. Combining terms and sim-
plifying give ;
‘ 8K0p + Kb — 9Kq’/ =120
- 2K6p + 16K6; — 3K = —120
| . Kby + Kb — 4Ky =0
Solving the equations above simultaneously, we compute
410 130 : 10 ,
=5k T Taux VT )
Substituting the values of the 5, 90 and ¢ into Equations 1, we com-
pute the member end moments below.
Myp = 19.05 kip-ft Mg, = 58.1 kip-ft
Mep = —44.76 kip-ft Mpe = —32.38 kip-ft (6)
Mg = —58.1 kip-ft My = 44,76 kip-ft
Member end moments and moment curves are shown on the sketch in S . _
Figure 12.17c; the deflected shape is shown in Figure 12.17d. Figure 12.17: () Member end moments and
moment curves {in kipft); (d) reactions and
deflected shape. :
66.4
moment P =12 kips
S

~ 5.14 kips

‘ 8.3 kips 3.7 kips
(o) : o K @)

[continues on next page)
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Example 12.10 continues . . .

Compute the horizontal displacerrient of joint B. Use Equation 1 for
Mg Express all variables in units of inches and kips.

2ET

Mas = 15(12)

(65 — 3¢) Q)

From the values in Equatlon 5 {p. 485), 8 = 5.86y; substituting mto
Equation 7, we compute

'1‘9.05(‘12)‘ %1;()240) (586 — 3y)

¥ = 0.000999 rad

A
y==  A=yL=0000999(15 X 12) = 018in  Ans.

12 6 Kmematuc Indeterminacy

To analyze a structure by the flexibility method, we first established the

degree of indeterminacy of the structure. The degree of statical indeter-
minacy determines the number of compatibility equations we must write
to evaluate the redundants, which are the unknowns in the compatibility

‘ equa’aons

In the slope-deflection method, dxsplacements_both ]omt rotations
and translations—are the unknowns. As a basic step in this method, we
must write equilibrium equations equal in number to the independent

joint displacements. The number of independent joint displacements is

termed the degree of kinematic indeterminacy. To determine the kine-
matic indeterminacy; we simply count the number of independent joint

.displacements that are free to occur. For example, if we neglect axial

deformations, the beam in Figure 12.18a is kinematically indeterminate
to the first degree. If we were to analyze this beam by slope-deflection,
only the rotation of joint B would be treated as an unknown.

If we also wished to consider axial stiffness in a more general stiff-
ness analysis, the axidl displacement at B would be considered an addi-
tional unknown, and the structure would be classified as kinematically
indeterminate to the second degree. Unless otherwise noted we will neg-
lect axial deformations in this discussion.

In Figure 12.18b the frame would be classified as kinematically inde-

terminate to the fourth degree because joints A, B, and C are free to rotate
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and the girder can translate laterally. Although the number of joint rota-
tions is simple to identify, in certain types of problems the number of inde-
pendent joint displacements may be more difficult to establish. One method
to determine the number of independent joint displacements is to introduce
imaginary rollers as joint restraints. The nurnber of rollers required to

restrain the joints of the structure from translating equals the number of .

independent joint displacements. For example, in Figure 12.18¢ the struc-
ture would be classified as kinematically indeterminate to the eighth
degree, because six joint rotations and two joint displacements are pos-
sible. Each imaginary roller (noted by the number$ 1 and 2) introduced
at a floor prevents all joints in that floor from displacing laterally. In Fig-
ure 12.184 the Vierendeel truss would be classified as kinematically
indeterminate to the eleventh degree (i.e., eight joint rotations and three
independent joint transliations). Imaginary rollers (labeled 1, 2, and 3)
added at joints B, C, and H prevent all joints from translating.

*» The slope-deflection procedure is an early classical method for
-analyzing indeterminate beams and rigid frames. In this method
joint displacements are the unknowns.
+ For highly indeterminate structures with a large number of Jomts
the slope-deflection solution requires that the engineer solve a series
‘of simultaneous equations equal in number to the unknown
displacements—a time-consuming operation. While the use of the
slope-deflection method to analyze structures is impractical given
the availability of computer programs, familiarity with the method
provides students with valuable insight into the behavior of structures.

* As an alternate to the slope-deflection method, moment distribution

was developed in the 1920s to analyze indeterminate beams and
frames by distributing unbalanced moments at joints in an artificially
restrained structure. While this method eliminates the solution of
simultaneous equations, it is still relatively long, especially if a
large number of loading conditions must be considered. Nevertheless,
moment distribution is a useful tool as an approximate method of
analysis both for checking the results of a computer analysis and in
making preliminary studies. We will use the slope-deflection equation
(in Chap. 13) to develop the moment distribution method.

+ A variation of the slope-deflection procedure, the general stiffness
method, used to prepare general-purpose computer programs, is
presented in Chapter 16. This method utilizes stiffness coefficients—
forces produced by unit displacements of joints. .

Summary 487

(d)

Figure 12.18: Evaluating degree of kinematic
indeterminacy: («) indeterminate first degree,
neglecting axial deformations; (») indeterminate
fourth degree; (¢) indeterminate eighth degree,
imaginary rollers added at points 1 and 2; {d) inde-
terminate eleventh degree, imaginary rollers
added at points 1, 2, and 3.
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488 Chapter 12

PROBLEMS

Analysis of Indeterminate Beams and Frames by the Slope-Deflection Method

P12.1 and P12.2. Using Equations 12.12 and 12.13,
compute the fixed end moments for the fixed-ended
beams. See Figures P12.1 and P12.2.

. P12.2

P12.3. Analyze by slope-deflection and draw the shear
and moment curves for the beam in Figure P12.3. Given:
EI = constant.

P =16 kips .

w = 2 kips/ft

¥ SN - A e -

P12.4. Analyze the beam in Figure P12.4 by slope-
deflection and draw the shear and moment diagrams for
the beam. EI is constant. '

24 kN

w= 12 kN/m

I 10m L - 14m 1

P12.4

P12.5. Analyze by slope-deflection and draw the shear
and moment curves for the continuous beam in Figure
P12.5. Given: EI is constant.

© P =30X%ips

5 kips/ft

P12.5

P12.6. Draw the shear and moment curves for the frame
in Figure P12.6. Given: EI is constant. How does this
problem differ from Problem P12.57

P =30 kips
w = 5 kips/ft l
B .
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P12.7. Compute the reactions at A and C in Figure P12.7.
Draw the shear and moment diagram for member BC.
Given: I = 2000 in* and E = 3,000 kips/in®.

“w=28kips/ft

117

e gk 24! |

P12.7

P12.8. Use the slope-deflection method to determine the
vertical deflection at B and the member end moments at
A and B for the beam in Figure P12.8. EI is a constant.
The guide support at B permits vertical displacement, but
allows no rotation or horizontal dxsplacement of the end
of the beam. - R -

Pi2.8

* B e - ¥ _3%3

A - - [ ST VR

Problems 489

P12.9. (a) Under the applied loads support B in Figure

‘ P12.9 settles 0.5 in. Determine all reactions. Given: E =

30,000 kips/in?, I = 240 in*. (b) Compute the deﬂecmon
of point C.

w =3 Kips/ft

A
e
l — 16

P12.9

P12.10. In Figure P12.10, support A rotates 0.002 rad
and support C settles 0.6 in. Draw the shear and moment
curves. Given: I = 144 in* and E = 29,000 kips/in2.

0.002 rad
ﬁ Tay

! 12/ | 15’ A

P12.10




490 Chapter 12

In Problems P12.11 to P12.14, take advantage of sym-
metry to simplify the analysis by slope deflection.

P12.11, (g) Compute all reactions and draw the shear
and moment curves for the beam in Figure P12.11. Given:
EI is‘ constant. (b) Compute the deflection under the load.

P =18 kips

[ PR VRN VU VN RN P PN

Pi2.11

P12.12. (a) Determine the member end moments for the
rectangular ring in Figure P12.12, and draw the shear and
moment curves for members AB and AD. The cross sec-
tion of the rectangular ring is 12 in X 8 inand E = 3000

kips/in®. (b) What is the axial force in member AD and

in member AB?7 -

w = 2 kips/ft

44

A e e TR T
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e . w=2kipsit .
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P12.12
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P12.13. Figure P12.13 shows the forces exerted By the

soil pressure on a typical 1-ft length of a concrete tun-
nel as well as the design load acting on the top slab.
Assume a fixed-end condition at the bottom of the walls
at A and D is produced by the connection to the foun-
dation mat. EI is constant.

200 b/ft

AR — 16’ L24]

P12.13

P12,14. Compute the reactions and draw the shear and
moment curves for the beam in Figure P12.14. Also E =
200 GPa and 7 = 120 X 10°® mm* Use symmetry to
simplify the analysis. Fixed ends at supports A and E.

LSm#«Sm—J«Sm%SmJ
P12.14
K e ‘ W SR ‘

[P AT
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P12.15. Consider the beam in Figure P12.14 without
the applied load. Compute the reactions and draw the
. shear and moment curves for the beam if support C settles
. 24 mm and support A rotates counterclockwise 0.005 rad.

P12.16. Analyze the frame in Figure P12.16. Given: EI
is constant for all members. Use symmetry to sxmphfy
the analysis.

8 kips it ) 8 kips

12 M 4 o]

P12.16

P12.17. Analyze the frame in Flgure P12 17. leen EI
is censtant Fixed ends at A and D.

L 20m |

P12.17

Problems 491

P12.18. Analyze the structure in Figure P12.18. In
addition to the applied load, support A rotates clockwise

by 0.005 rad. Also E = 200 GPa and = 25 X 10° mm?*
for all members. Fixed end at A,

w'=30 kN/m

_4mvy |

' P12L1é "

P12, 19 Analyze the frame in Flgure P12 19 Gwen EI

is constant, Fixed supports at A and B.

SOKN SOkN

P12.19



http:FlgureP12.19
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P12 20 (a) Draw the shear and moment curves for the
frame in Figure P12.20. (b) Compute the deflection at
midspan of girder BC. Given: E = 29,000 kips/in®.

‘{BC = 1200 in4

| |1,5=300in* Iep =300 in*

18’ | 18’ |

- P12.21. Analyze the frame in Figure P12.21. Compute

all reactions. Also Iye = 200 in* and I, = Ip, = 150 m“‘
E is constant.

, 18’ !

P12.21

B B - IR M =
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P12.22. Analyze the frame in Figure P12.22. Also El is
constant. Notice that sidesway is possible because the
load is unsymmetric. Compute the horizontal displace-
ment of joint B. Given: E = 29,000 kips/in® and I = 240
in* for all members.

w = 4 kips/ft

l 207 |

Pi2.22

P12.23. Compute the reactions and draw the shear and
moment diagrams for beam BC in Figure P12.23. Also
EI is constant.

P12.23

CINE .




P12.24. Determine all reactions in Figure P12.24. Draw
the shear and moment diagrams for member BC. The
ends of the beams at points A and C are embedded in
concrete walls that produce fixed supports The light
baseplate at D may be treated as a pin support Also. El
is constant.

P12.25. Determine all reactions at points A and D in
Figure P12.25. El is constant.

Problem's 493

P12.26. If support A in Figure P12.26 is constructed
0.48 ini too low and the support at C is accidentally con-

structed at a slope of 0.016 rad clockwise from a verti-
cal axis through C, determine the moment and reactions
created when the structure is connected to its supports.
Given: E = 29,000 kips/in®.

a= 0016 rad"] lf\

f 24" — {

P12.26

P12.27. If member AB in Figure P12.27 is fabricated 3
in too long, determine the moments and reactions cre-
ated in the frame when it is erected. Sketch the deflected
shape. E= 29,000 kips/in?.

[=240 in* C
| 10m .
P12.25 |
! 24 .
P12.27
P P - TR e - I e . - C R e me *
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http:FigureP12.27
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P12.28. Set up the equilibrium equations required to analyze the frame in Figufe .

P12.28 by slope deflection. Express the equilibrium equatxons in terms of the appro-
priate displacements; E7 is constant for all members.

P12.29. Analyze the frame in Figure P12.29. Also El is constant. hxed supports
at A and D.

Sm
B
70 kN —»TTT -
Sm
: 5m n‘
P12.29
- - BT B - CINE e -
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P12.30. Determine the degree of kinematic indeterminacy for each structure in
Figure P12.30. Neglect axial deformations.

b

Bl gneig

d)

P12.30

Problems

495
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East Bay Drive, a post-tensioned concrete frame bridge, 146 ft long, mainspan 60 ft, edge of concrete
girder 7 in thick. . C
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