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t,?1~i~ Introduction 

The slope-deflection method is a. procedure for analyzing indeterminate 
beams and frames. It is known as a displacement method since equilib­
rium equations, which are used in the analysis, are expressed in terms of 
unknown joint displacements. 

The slope-deflection method is important because it introd.uces the stu­
dent to the stiffness method of analysis. This method is the basis of many 
general-purpose computer programs for analyzing all types of structures­
beams, trusse~'; shells, and so forth. In addition, moment distribution-a 
commonly used hand method for analyzing beams and frames rapidly­
is also based on the stiffness formulation. 

In the slope-deflection method an expression, called the slope­
deflection equation, is used to relate the moment at each end of a mem­
ber both to the end displacements of the member and to the loads applied 
to the member between its ends. End displacements of a member can 
include both a rotation and a translation perpendicular to the member's 
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longitudinal axis . 
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To introduce the main features ofthe slope-deflection method, we briefly 
outline the analysis of a two-span continuous beam. As shown in Figure 
12;la, the structure consists of a single member supported by rollers at 
points A and B and a pin at C. We imagine thatthe structure can be divided 
into beam segments AB and BC and joints A, B, and C by passing planes 
through the beam an infinitesimal distance before and after each support . 
(see Fig. 12.1b). Since the joints are essentially points in space, the 
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(a) 

RA 

Joint A 

Figure 12.1: (a) Continuous beam with applied 
loads (deflected shape shown by dashed line); 
(b) free bodies of joints and beams (sign conven­
tion: clockwise moment on the end of a member 
is positive). 
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RB ~c 

JointB Joint C 

(b) 

length of each member is equal to the distance between joints. In this prob­
lem (JA, (JB' and Oc, the rotational displacements of the joints (and also the 
rotational displacements of the ends of the members), are the unknowns. 
These displacements are shown to an exaggerated scale by the dashed line 
in Figure 12.1a. Since the supports do not move vertically. the lateral dis­
placements of thejoints are zero; thus there are no unknown joint trans­
lations in this example. 

To begin the analysis of the beam by the slope-deflection method, we 
,use the slopf!-deflection equation (which we will derive shortly) to express 
the moments at the ends of each member in terms of the unknown joint 
displacements and the applied loads. We. can represent this step by the 
following set ofequations: . 

MAB = f(OA' 0B. Pj ) 

MBA = f(fJA, (JB, P1) 
(12.1) 

M Bc = f(OB' (Jc. P2) 

MeB = f(fJ B, (Je, P2) 

where the symbolf() stands for afunction of 
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Section 12.3 Derivation of the Slope-Deflection Equation 

We next write equilibrium equations that express the condition that 
the joints are in equilibrium with respect to the applied moments; that is, 
the sum of the moments applied to each joint by the ends of the beams 
framing into the joint equals zero. As a sign convention we assume that 
all unknown moments are positive and act clockwise on the ends ofmem­
bers. Since the moments applied to the ends of members represent the ­
action of the joint on the member, equal and oppositely directed moments 
must act on the joints (see Fig. 12.1b). The three joint equilibrium. equa­
tions are . 

At joint A: MAB = 0 

AtjointB: MBA + MBc = 0 (12.2) 

At joint c: MCB = 0 

By substituting Equations 12.1 into Equations 12.2, we produce three 
equations that are functions of the three unknown displacements (as well 
as the applied loads and properties of the members that are specified). 
These three equations can then be solved simultaneously for the values 
of the unknown joint rotations. After the joint rotations are computed, we 
can evaluate the member end moments by substituting the values of the 
joint rotations into Equations 12.1. Once the magnitude and direction of 
the end moments are established, we apply the equations of statics to free 
bodies of the beams to compute the end shears. As a final step, we com­
pute the support reactions by considering the equilibrium of the joints 
(i.e., summing forces in the vertical direction). 

In Section 12.3 we derive the slope-deflection equation for a typical 
flexural member of constant cross section using the moment-area method 
developed in Chapter 9 . 
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~~~;~i;'~_;ll Derivation of the Slope-Deflection Equation 

To develop the slope-deflection equation, which relates the moments at 
the ends of members to the end displacements and the applied loads, we 
will analyze span AB of the continuous beam in Figure 12.2a. Since dif­
ferential settlements of supports in continuous members also create end 
moments, we will include this effect in the derivation. The beam, which 
is initially straight, has a constant cross section; that is, ET is constant along 
the longitudinal axis. When the distributed load w(x), which can vary in 
any arbitrary manner along the beam's axis, is applied, supports A and B 
settle; respectively, by amounts ~A and ~B to points A' and B'. Figure 
12.2b shows a free body of span AB with all applied loads. The moments 
MAB and MBA and the shears VA and VB represent the forces exerted by the 
joints on the ends of the beam. Although we assume that no axial load 
acts, the presence of small to moderate values of axial load (say, 10 to 15 
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w(x) 
.initial position 

elastic curve 

1---- L --~,*,I,--- L' --~ 
(a) 

CtWiLJ 1 J;J;;jt:5 
VA I~ L -----+l~1 VB 

(b) 

simple beam 

Cd) 

Figure 12.2: (a) Continuous beam whose sup­ percent oithe member's buckling load) would not invalidate the deriva­
ports settle under load; (b) free body of member tion. On the other hand, a large compression force would reduce the mem­
AB; (c) moment curve plotted by parts. 10.15 equals 

ber's flexural stiffness by creating additional deflection due to the sec­the ordinate of the simple beam moment curve; 
(d) deformations of member AB plotted to an 	 ondary moments produced by the eccentricity of the axial load-the P-A 
exaggerated vertical scale. 	 effect. As a sign convention, we assume that moments acting at the ends 

of members in the clockwise direction are positive. Clockwise rotations 
of the ends of members will also be considered positive. 

In Figure 12.2c the moment curves produced by both the distributed 
load w(x) and the end moments MAB and MBA are drawn by parts. The 
moment curve associated with the distributed load is called the simple 
beam moment curve. In other words, in Figure 12.2c, we are superim­
posing the moments produced by three loads: (1) the end moment MAB• 

(2) the end moment MBA' and (3) the loa<i w(x) applied between ends of 
the beam. The moment curvefor each force has been plotted on the side 
of the beam that is placed in compression by that particular force. 

Figure 12.2d shows the deflected shape of spanAB to an exaggerated 
scale. All angles and rotations are.shown in the positive sense; that is, all 
have undergone clockwise rotations from the original horizontal position 
of the axis. The slope of the chord, which connects the ends of the mem­
ber at points A' and B' in their deflected position, is denoted by !/JAB' To 
establish if a chord angle is positive or negative, we can draw a horizon­
tal line through either end of the beam. If the horizontal line must be 

r line tangent to elastic curve at B' 
/ 

line tangent to curve at A I / 

(e) 

• .,. 
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rotated clockwise through an acute angle to make it coincide with the chord, 
the slope angle is positive. If a counterclockwise rotation is required, the 
slope is negative. Notice, in Figure 12.2d, that !/JAB is positive regardless 
of the end of the beam at which it is evaluated. And 0 A and OB represent 
the end rotations of the member. At each end of span AB, tangent lines are 
drawn to the elastic curve; tAB and tBA are the tangential deviations (the 
vertical distance) from the tangent lines to the elastic curve'. 

To derive the slope-deflection equation, we will now use the second 
moment-area theorem to establish the relationship between the member 
end moments MAS and MBA and the rotational deformations of the elastic 
curve shown to an exaggerated scale in Figure 12.2d. Since the deforma­
tions are small, 'YA' the angle between the chord and the line tangent to the 
elastic curve at point A, can be expressed as ' 

(12.3a) 

Similarly, 'Ys, the angle between the chord and the line tangent to the 
elastic curve at B, equals 

tAB. 
'Y8=- (12.3b) 
. L 

Since 'YA = OA - !/JAB and 'Yo = Os - !/JAS' we can express Equations 
12.3a and 12.3b as . 

tSA 
OA - !/JAS = - (12.4a)

L 

eB - !/J.w =L
tAS (l2.4b) 

o.B - AA
where !/JAB = (l2.4c)

L 

To express tAB and tEA in .terms of the applied moments, we divide the ordi­
nates of the moment curves in Figure 12.2c by EI to produce M/EI curves 
and, applying the second moment-area principle, sum the moments of the 
area under the M/EI curves about the A end of member AB to give tAS 
and about the B end to give tEA' 

MBA L 2L MAS L L 
t -------- ­ (12.5)AB- El23EI23 

MAS L 2L MSA L L (AMX)S 
(12.6)tSA = EI 2' 3 - EI 2' 3" + EI 

The first and second terms in Equations 12.5 and 12.6 represent the first 
moments of the triangular areas associated with the end moments MAS and 
MEA' The last term-(AMi)A in Equation 12.5 and (AMi)B in Equation 
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wL 
RB = 2: 

Moment 
diagram 

Figure 12.3: Simple beam moment curve pro­
duced by a uniform load. 

12.~represents the first moment of the area under the simple beam 
moment curve about the ends of the beam (the subscript indicates the end 
of the beam about which moments are taken), As a sign convention, we 
assume that the contribution of each, moment curve to the tangential 
deviation is positive if it increases the tangential deviation and negative 
if it decreases the tangential deviation. 

To illustrate the computation of (AMx)A for a beam carrying a uni­
formly distributed load w (see Fig. 12.3), we draw the simple beam 
moment curve, a parabolic curve, and evaluate the product of the area 
under the curve and the distance xbetween point A and the centroid of 
the area: 

(12.7) 

Since the moment curve is symmetric, (AMx)B equals (AMx)k 
If we next substitute the values of tAB and tEA given by Equations 12.5 

and 12.6 into Equations 12.4a and 12.4b, we can write i.. _ 

_1 [MBA L 2L MAB ,L L (AMX)A] 
()A - t{lAB - L EI"2"3 - EI "23"- EI (12.8) 

_ 1 [MAB L 2L MBA L L (AMX)B] 
(12.9)o B - t{IAB - L El"2 "3 - EI "2 3" - EI 

To establish the slope-deflection equations, we solve Equations 12.8 and 
12.9 simultaneously forMAlJ and MBA to give 

2EI 2(AMX)A 
(12.10)MAB = L (2eA + OB - 3t{1AB) + L2 

w(x) 

I 
MAB = FEMAB 

• 

II-'---,--- L ----....J 

Figure 12.4 
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(12.11) 


In Equations 12.10 and 12.11, the last two terms that contain the quan­
tities (AMx)A and (AMx)B are a function of the loads applied between ends 
of the member only. We can give these terms a physical meaning by using 
Equations 12.10 and 12.11 to evaluate the moments in a fixed-end beam 
that has the same dimensions (cross section and span length) and sup­
ports the same load as member AB.in Figure 12.2a (see Fig. 12.4). Since 
the ends of the beam in Figure 12.4 are fIXed, t;he member end moments 
MAB and MBA' which are also termed fixed-end moments, may be desig­
nated FEMAB and FEMBA• Because the ends of the beam in Figure 12.4 are 
fixed against rotation and because no support settlements occur, it fol­
lows that . 

·.-t~ ....... ___ • • 
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Substituting these values into Equations 12.10 and 12.11 t<;> evaluate 
the member end moments (or fixed-end moments) in the beam of Figure 
12.4, we can write 

. 2(AMx)A . 4(AMXh 

FEMAB = MAB = .L2 -L2. (12.12) 


4 (AMx)A 2(AMXh 
(12.13)FEMBA = MBA = . L2 . - L2 

Using the results of Equations 12.12 and 12.13, we can write Equations 
12.10 and 12.11 more simply by replacing the last two terms by FEMAB 
and FEMBA to produce 

2EI 
MAB =T(20A + OB - 3!/JAB) + FEMA8 (12.14) 

MBA = T2EI 
(208 + OA - 3!/JAB) + FEMBA (12.15) 

Since Equations 12.14 and 12.15 have the same foim, we can replace them 
with a single equation in which we denote the end where the moment is 
being computed as the near end (N) and the opposite end as the far end (F). 
With this adjustment we c~ write the slope-deflection equation as 
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(12.16) 

In Equation 12.16 the proportions of the member appear in the ratio IlL. 
This ratio, which is called the relative flexural stiffness of member NF, 
is denoted by the symbol K. 

Relative flexural stiffness K = f (12.17) 

Substituting Equation 12.17 into Equation 12.16, we can write the slope­
deflection equation as 

The value of the fixed-end moment (FEMNF) in Equation 12.16 or 
12.16a can be computed for any type of loading by Equations 12.12 and 
12.13. The use of these equations to determine the fixed-end moments 
produced by a single concentrated load at midspan of a fixed-ended 
beam is illustrated in Example 12.LSee Figure 12.5. Values of fixed-end 
moments for other types of loading as well as support displacements are 
also given on the back covel' . 

(12.16a) 

I 
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(a) 
PL-8 +PL 

8 

P 
-i---- b ---+\jf 

(b) o2P~~~==2.i~ +P~~2 
:.----L ----11&, 

(c) 

(d) 
.ro--;---- L ----->1 

P P 

I" 

I+--'---L------I 

Figure 12.5: Fixed-end moments. 

EXAMPLE 12,1 Using Equations 12.12 and 12,13, compute the fixed-end moments pro­
duced by a concentrated load P at midspan of the fixed-ended beam in 
Figure 12,6a; We know that EI is constant. 

Solution 
Equations 12.12 and 12.13 require that we compute, with respect to both 
ends of the beam in Figure 12.6a, the moment of the area under the sim­
ple beam moment curve produced by the applied load. To establish the 
simple beam moment curve, we imagine the beam AB in Figure 12;6a is 
removed from the fixed supports and placed on a set of simple supports, 
as shown in Figure 12.6b. The resulting simple beam moment curve pro­

-
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duced by the concentrated load at midspan is shown in Figure 12.6c. Since 
the area under the moment curve is symmetric, . 

PL3 

=­
16 

Using Equation 12.12 yields 
(a) 

2 (AMx)A 4(A.uX)B P
FEMAB == L2 - L2 

3 3 
== ~ (PL ) _ ~ (PL )

L2 16 L'2 16 

. PL ( the minus sign indicates a ==-­
8 counterclockwise moment) ADS. 

Using Equation 12.13 yields PL 

4(AMx)A 2 (AN/X)8 

FEMBA == L2 - L2 


(c) 

clockwise ADS. Figure 12.6 

P 

) 

(b) 

12.4. 	 Analysis of Structures by the 

Slope-Deflection Method 


Although the slope-deflection method can be used to analyze any type of 
. indeterminate beam or frame, we will initially limit the method to inde­
terminate beams whose supports do not settle and to braced frames 
whose joints are free to rotate but are restrained against the displace­
ment-restraintcan be supplied by bracing members (Fig. 3.23g) or by 
supports. For these types of structures, the chord rotation angle I/JNF in 
Equation 12.16 equals zero. Examples of several structures whose joints 
do not displace laterally but are free to rotate are shown in Figure 12.7a 
and b. In Figure 12.7a joint A is restrained against displacement by the 
fixed support and joint C by the pin support. Neglecting second-order 
changes in the length of members produced by bending and axial defor­
mations, we can assume that joint 1J is restrained against horizontal dis­
placement by member BC, which is connected to an immovable support 
at C and against vertical displacement by member AB, which connects to 
the fixed support at A. The approximate· deflected shape of the . loaded 
structures in Figure 12.7 is shown by dashed lines . 
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p Figure 12.7b shows a structure whose 90nfiguration and loading are 
symmetric with respect to the vertical axis passing through the center of 
member Be. Since a symmetric· structure under a symmetric load must 
deform in a symmetric pattern, no lateral displacement of the top joints 
can occur in either direction. 

Figure 12.7 c and d shows examples of frames that contain joints that 
are free to displace laterally as well as to rotate under the applied loads. 
Under the lateral load H, joints Band C in Figure 12.7c displace to the 

A 90'. 	
right. This displacement produces chord rotations !/J = Iljh in members 

(a) 	 AB and CD. Since no vertical displacements of joints Band C occur­

i 
, 
I 
I 

~ ~ ! 

\..-£:_,I~L
2 2' 

(b) 

, 

£: -l-£:
2 2 

(e) 

p 

·A."B 

neglecting secondcorder bending and axial deformations of the columns­
w 

the chord rotation of the girder!/JBc equals zero. Although the frame in 
Figure 12.7d supports a vertical load, joints Band C will displace later­
ally to the right a distance 11 because of the bending deformations of 
members AB and Be. We will consider the analysis of structures that 
contain one or more members with chord rotations in Section 12.5. 

, I The basic steps of the slope-deflection method, which were discussed 
axis of I

\ 	 symmetry ,J 
in Section 12.2, are summarized briefly below: 

,;I~' 
A SummaryI 

1. 	 Identify all unknown joint displacements (rotations) to establish the 
number of unknowns. 

2. 	 Use the slope-deflection equation (Eq. 12.16) to express all member 
end moments in terms of joint rotations and the applied loads. 

3. 	 At each joint, except fixed supports, write the moment equilibrium 
equation, which states that the sum of the moments (applied by the 
members framing into the joint) equals zero. An equilibrium equation 
at a fixed support, which reduces to the identity °:::::: 0, supplies no 
useful information. The number of equilibrium equations must equal 
the number of unknown displacements. 

As a sign convention, clockwise moments on the ends of the 
members are assumed to be positive. If a moment at the end of a 
member is unknown, it must be shown clockwise on the end of a 
member. The moment applied by a member to a joint is always 
equal and opposite in direction to the moment acting on the end of 
the member. If the magnitude and direction of the moment on the 
end of a member are known, they are shown in the actual direction. 

4. Substitute the expressions for moments as a function of 
displacements (see step 2) into the eqUilibrium equations in step 3, 

f 90' and solve for the unknown displacements. I 
/ 


1 t"'AB 

Figure 12.7: (a) All joints restrained against displacement; all chord rotations'" equal 
zero; (b) due to symmetry of structure and loading, joints free to rotate but not translate; 

A 

(d) 	 chord rotations equal zero; (e) and (d) unbraced frames with chord rotations. 
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5. 	Substitute the values of displacement in step 4 into the expressions 
for member end moment in step 2 to establish the value of the 
member end moments. Once the member end moments are known, 
the balance of the analysis...,....drawing shear and moment curves or 
computing reactions, for example-is completed by statics. 

Examples 12.2 and 12.3 illustrate the procedure outlined above. 

Using the slope-deflection method, determine the member end moments in 
the indeterminate beam shown in Figure 12.8a. The beam, which behaves 
elastically, carries a concentrated load at midspan. After the end moments 
are determined, draw the shear and moment curves. If I = 240 in4 and E 
30,000 kips/in2, compute the magnitude of the slope at joint B. 

Ss 

(a) 

VSA 

ct 	 J:)
MAS 	 MSA ~IT 

(b) 

Rs 
(e) 

VAS 

ct 	 J
54 kip.ft 

L= 18' 

(d) 

11 

shear 

-54 kip·ft 
(e) 

EXAMPLE 12.2 


Figure 12.8: (a) Beam with one unknown dis­
placement 8B; (/:1.) free body of beamAB; unknown 
member end moments MAS and MBA shown clock­
wise; (c) free body ofjoint B; (d) free body used 
to compute end shears; (e) shear and moment 
curves. 

[continues on next page] 
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Example 12.2 continues . .. 

.. 


Solution 
Since joint A is fixed against rotation, 0A = 0; therefore, the only unknown 
displacement is (JR' the rotation of joint B (!{lAB is, of course, zero since no 
support settlements occur). Using the slope-deflection equation 

and the values in Figure 12.5a for the fixed-end moments produced by a 
concentrated load at midspan, we can express the member end moments 
~hown in Figure 12.8b as 

M = 2EI (0 ) _PL (1)
AB L B 8 

(2) 

To determine (JB, we next write the equation of moment equilibrium 
at joint B (see Fig. 12;8c): 

0+ ."2,MB = 0 

MBA = 0 (3) 
-" ..-. . . ";.-'. '" 

Substituting the value of MBA given by Equation 2 into Equation 3 and 
solving for OB give. 

4E10 +PL = 0 
L B 8 . 

PL2 

(4)f)B = - 32E1 

where the minus sign indicates both that the B end of member AB and 
jointS rotate in the counterclockwise direction. To determine the mem­
ber end moments, the value of (JB given by Equation 4 is substituted into 
Equations 1 and 2 to give 

PL 3PL . - = -- = -54kip·ft Ans. 
8 16 

2 
M = 4E1 (-PL ) + !L= 

BA L 32El 8. 0 

Although we know that MBA is zero since the support at B is a pin, the 
computation of MBA serves as a check. 

To complete the analysis, we apply the equations of statics to a free 
body of member AB (see Fig. 12.8d) . 

• 
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0+ l:.MA = 0 

0= (16kips)(9ft) - VBA (18 ft) - 54kip·ft 

VBA = 5 kips 
+ 
t l:.Fy = 0 

0= VBA + VAB - 16 

VAB = 11 kips 

To evaluate 8s, we express all variables in Equation 4 in units of inches 
and kips. 

PL2 16(18 X 12)2 

--32-EI = - 32(30,000)240 = -0.0032 rad 


Expressing 8B in degrees, we obtain 

21T rad -0.0032 
---=--­

3600 8B 

OB = -0.183° Ans. 

Note that the slope 8B is extremely small and not discernible to the 
naked eye. 

NOTE. When you analyze a structure by the slope-deflection method, 
you must follow a rigid format in formulating the equilibrium equations. 
There is no need to guess the direction of unknown member end moments 
since the solution of the equilibrium equations will automatically pro­
duce the correct direction for displacements and moments. For example, 
in Figure 12.8b we show the moments MAB and MSA clockwise on the 
ends of member AB even though intuitively ...ve may recognize from a 
sketch of the deflected shape in Figure 12.8a that moment MAS must act 
in the counterclockwise direction because the beam is bent concave 
downward at the left end by the load. When the solution indicates MABis 

-54 kip·ft, we know from the negative sign that MAB actually acts on the 
end of the member in the counterclockwise direction. 

Using the slope-deflection method, determine the member end moments E X AMP L E 1 2 . 3 
in the braced frame shown in Figure 12.9a. Also compute the reactions 
at support D, and draw the shear and moment curves for members AB 
and BD. . [continues on next page] 
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1---- 18,-----<.1 

B V=6kips 

P=6kips. 

Example 12.3 continues . .. 

Figure 12.9: (a) Frame details; (b) joint D; 
(c) joint B (shears and axial forces omitted for 
clarity); (d) free bodies of members and joints 
used to compute shears and reactions 
(moments acting on joint B omjtted for clarity). 

1------ 18'~---4.1.- 4'--l 

(a) 

(~r 
Mac =24 kip.ft 

I·,· 
~MDa 
iJf 

(b) (c) 

V=6kips P=6kips 

l (t.iM:I-l 
I B C 

24 kip.ft 

Vsn = 1.43 kips 

F =22.57 kips 

F.= 22.57 kips 

--I..... Van =1.43 kips Bt . 
16.57 kips 12.86 kip-ft 

12.86 kip.ft JC:.::.. 

kip-ft 
62.57 kip.ft 

Dx = 1.43 kips 1.43 kips 

t 
V M 

Dy = 22.57 kips 

(d) i 
468 1 

• 
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Solution 
Since ()A equals zero because of the fixed support atA, ()B and 0D are the 
only unknown joint displacements we must consider.·· Although the 
moment applied to joint B by the cantilever BC must be included in the 
joint equilibrium equation. there is no need to include the cantilever in 
the slope-deflection analysis· of the indeterminate portions of the frame 
because the cantilever is determinate; that is, the shear and the moment 
at any section of member BC can be determined by the equations of stat­
ics. In the slope-deflection solution, we can treat the cantilever as a 
device that applies a vertical force of 6 kips and a clockwise moment of 
24 kip'ft to joint B. . 

Using the slope-deflection equation 

2EI 
MNF = L (2eN + OF - 3t/1NF) + FEMNF (12.16) 

where all variables are expressed in units of kip'inches and the fixed-end 
moments produced by the uniform load on member AB (see Fig. 12.5d) 
equal 

WL2 

FEMAB::::i - 12 

. WL2 

FEMBA = + 12 

we can express the member end moments as 

2E(120) 2(18)2(12) 
MAB 18(12) (eB) - 12 = 1.11E()B - 648. (1) 

2E(120) 2(18)2(12) . 
M = (2() ) + = 2.22E8 + 648 (2)

BA. 18(12) B 12 B . 

2E(60)
MBD = 9(12) (28B + 8D) = 2.22EOB + 1.11EOD (3) 

2E(60)
MDB = 9(12) (28D + 8B) = 2.22EOD + 1.11E()B (4) 

To solve for the unknown joint displacements eB and 8D• we write 
equilibrium equations at joints D and B. 

At joint D (see Fig. 12.9b): +0 'i-MD = 0 

MDB = 0 (5) 

At joint B (see Fig.12.9c): +0 'i-MB = 0 

MBA + MBD - 24(12) = 0 (6) [continues on next page] 
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Example 12.3 continues . .. Since the magnitude and direction of the moment MBC at the B end of the 
cantilever can be evaluated by statics (summing moments about point B), 
it is applied in the correct sense (com.1terclockwise) on the end -of mem­
ber Be, as shown in Figure 12.9c. On the other hand, since the magni­
tude and direction of the end moments MBA and MBD are unknown, they 
are assumed to act in the positive sense-clockwise on the ends of the 
members and counterclockwise on the joint. 

Using Equations 2 to 4 to express the moments in Equations 5 and 6 
in terms of displacements, we can write the equilibrium equations as 

At joint D: 2.22EOD + 1. 11EOB = 0 (7) 

AtjointB: (2.22EO B + 648) + (2.22EO B + L11EOD) - 288 = 0 (8) 

Solving Equations 7 and 8 simultaneously gives 

e _ 46.33 
D- E 

92.66 
"E 

e
To establish the values of the member end moments, the values of ()B and 

D above are substituted into Equations 1,2, and 3, giving 

',' ( 92.66)
MAS = l.11E - ---e - 648 

= -750.85 kip·in ::::: -62.57 kipoft Ans. 

92.66)
MBA = 2.22E ( - ---e + 648 

= 442.29 kip·in = +36.86 kip·ft Ans. 

MBD = 2.22E(- 92:6) + 1.11E(46;3 ) 

-154.28 kip·in=-12.86kip·ft Ans. 

Now that the member end moments are known, we complete the analy­
sis by using the equations of statics to determine the shears at the ends 
of all members. Figure 12.9d shows free-body diagrams of both mem­
bers and joints: Except for the cantilever, all,members carry axial forces 
as well as shear and moment. After the shears are computed, axial forces 
and reactions can be evaluated by considering the equilibrium of the 
joints. For example. vertical equilibrium of the forces applied to joint B 
requires that the vertical force F in column BD equal the sum of the 
shears applied to joint B by the B ends of members AB and Be. 

..;: 

~-,, 

1.... 
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Use of Symmetry to Simplify the Analysis of a Synlmetric 
Structure with a Symmetric Load . 

Deteqnine the reactions and draw the shear and moment curves for the 
columns and girder of the rigid frame shown in Figure 12.lOa. Given: 
lAB = leD = 120 in4, lBe = 360 in4, and E is constant for all members. 

Solution 
Although joints Band C rotate, they do not displace laterally because both 
the structure and its load are symmetric with respect to a vertical axis of 
symmetry passing through the center of the girder. Moreover, eB and ec 
are equal in magnitude; however, es, a clockwise rotation, is positive, 

MBe 

BF) 
'-..-IIMBA 

~MBA 

I 
(a) 

v = 30 30 kips 30 kips 

7.81 kips * V = 7.81 kipstBbiZE!1s~~:::;::;:::E~:ill* 7.81 kips + 
83.33 kiP.fl-t___ 30' ___.....e ';'33 kip·ft I,,83.33 kip," 

~~ , 
Ax=7.81kips~ A 

shear . 

~ t j 41.67 kip.ft 
-30kipsT 

141.67 kip·ft A = 30 kips y 

moment 

-83.33 kip.ft -83.33 kip.ft 

(c) 

EXAMPLE 12.4 

MBe 

( 

(b) 

83.33 kip· ft 

41.67 kip·ft 

shear moment 


Figure 12.10: (a) Symmetric structure and load; 
(b) moments acting on joint B (axial forces and 
shears omitted); (c) free bodies of girder Be and 
column AB used to compute shears; final shear 
and moment curves also shown. 

[continues on next page] 
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Example 12.4 continues . .. and (ie, a counterclockwise rotation, is negative. Since the problem con­
tainsonly one unknown joint rotation, we can determine its magnitude 
by writing the equilibrium equation for either joint B or joint C. We will 
arbitrarily choose joint B. 

Expressing member end moments with Equation 12.16, reading the 
vaJ.ue of fixed-end moment for member BC from Figure 12.Sd, express­
ing units in kips'inch,and substituting BB = 0 and Be = -0, we can write 

. 2E(120). 
(1)MAB = 16(12) (OB) = 1.2SEOB 

. 2E(120) 
MBA = 16(12) (28B) = 2.S0EOB (2) 

2E(360) WL2 

MBe == 30(12) (20B + Oc) - 12 

2(30)2(12) 
= 2E[20 + (-0)] - 12 = 2EO - 1800 (3) 

Writing the equilibrium equation at joint B (see Fig. 12.lOb) yields 

(4) 

Substituting Equations 2 and 3 into Equation 4 and solving for 0 produce 

2.5EO + 2.0EO - 1800 = 0 

o= 400 (5)
E 

Substituting the value of 8 given by Equation 5 into Equations 1,2, and 
3 gives 

MAS 1.25E( 4~0) 
.= 500 kip·in == 41.67 kip·ft Ans. 

MBA 2.SE( 4~0 ) 

= 1000 kip· in = 83.33 kip-ft Ans. 

MBe = 2E( 4~0) - 1800 

= -1000 kip·in = -83.33 kip·ft counterclockwise Ans. 

The final results of the analysis are shown in Figure 12.lOc. 

1; Ie 

, 
1 

• 
 .. .. .. .. 
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Using symmetry to simplify the slope-deflection analysis ot'the frame in 
Figure 12.11a, determine the reactions at supports A and D. 

Solution 
Examination of the frame shows that all joint rotations a,re zero. Both ()A 

and {)c are zero because of the fixed supports at A and C. Since column 
BD lies on the vertical axis of symmetry, we can infer that it must remain 
straight since the deflected shape of the structure with respect to the axis 
of symmetry must be symmetric. If the column were to berid in either 
direction, the requirement that the pattern of deformations be symmetric 

p= 16 kips p= 16 kips 

I-- 10,-1- 10'--1- 10'---1- 10'--1 

(a) 

p= 16 kips 


8 kips 8 kips 


(rr:.'\B --(I 8154OkiP~t=;.;;;;;..;;.;.;..===OIOiillj~.ttpo. 40 kipoft ~ 40 kipo' 
8 kips 

16 kips 

16 kips 

40 kip.ft 
B~ tJ$V ~M 

40 kip.ft 40 kip·ft 

16 kips 
(b) 

'.-,'- ..a.- ~ 

EXAMPLE 12.5 


Figure 12.11: (a) Symmetric frame with sym­
metric load (deflected shape shown by dashed 
line); (b) free body of beam AB, joint B, and col­
umn BD. Final shear and moment diagrams for 
beamAB. 

[continues on next page] 
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Example 12.5 continues . .. 	 would be violated. Since the column remains straight, neither the top nor 
bottom joints at Band D rotate; therefore, both (jB and (jD equal zero. 
Because no support settlements occur, chord rotations for all members are 
zero. Since all joint and chord rotations are zero, we can see from the j 
slope-deflection equation CEq. 12.16) that the member end moments at , . 

each end of beams AB and Be are equal to the fixed-end moments PL/8 
given by Figure 12.5a: 

PL 16(20) . 
FEM = + = = +40 kip·ft- 8 8 ­

Free bodies ofbeamAB,jointB, andcolumnBD are shown in Figure 12.11. 

NOTE. The analysis of the frame in Figure 12.11 shows that column BD 
carries only axial load because the moments applied by the beams to each 
side of the joint are the same. A similar condition often exists at the inte­
rior columns of multistory buildings whose structure consists of either a 
continuous reinforced concrete or a welded-!<teel rigid-jointed frame. 
Although a rigid joint has the capacity to transfer moments from the 
beams to the .column, it is the difference between the moments applied 
by the girders on either side of a joint that determines the moment to be 
transferred. When the span lengths of the beams and the loads they sup­
port are approximately the same (a condition that exists in most build- . 
ings).thedifference. in moment is small. As a result, in the preliminary 
design stage most columns can be sized accurately by considering only 
. the magnitude of the . axial. load produced by the gravity load from the 
tributary area supported by the column. 

I ' 

EXAMPLE 12.6 Determine the reactions and draw the shear and moment curves for the 

beam in Figure 12.12. The support atA has been accidentally constructed 
with a slope that makes an angle of 0.009 rad with the vertical y-axis 
through support A, and B has been constructed 1.2 in below its intended 
position. Given: EI is constant, 1= 360 in4, and E = 29,000 kips/in2. r 

Solution 
The slope at A and the chord rotation I/JAB can be determined from the I 
information supplied about the support displacements. Since the end of }
the beam is rigidly connected to the fixed support at A, it rotates coun­ i 
terclockwise with the support; and (JA = -0.009 rad. The settlement of 
support B relative to support A produces a clockwise chord rotation 

~ 1.2 
"'AB = L = 20(12) = 0.005 radians I 
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Angle 0B is the only unknown displacement, and the fixed-end moments 
are zero because no loads act on beam. Expressing member end moments 
with the slope-deflection equation (Eq. 12.16), we have 

2EIAB .. . 
MAB = -- (20A + Os - 3t/1AS) +FEMAB 

LAB 

2E(360) 
MAs = 20(12) [2(-0.009) + OB - 3(0.005)J (1) 

. 2E(360) 
MBA = 20(12) [20s + (-0.009) - 3 (0.005) J (2) 

Writing the equilibrium equation at joint B yields 

+0 "" ~MB= 0 

MBA = 0 (3) 

Substituting Equation 2 into Equation 3 and solving for OB yield 

3E(20s - 0.009 - 0.015) = 0 

0B = 0.012 radians 

To evaluate MAS' substitute 0B into Equation 1: 

MAB = 3(29,000)[2(-0.009) + 0.012 - 3(0.005)] 

= -1827 kip·in = 152.25 kip·ft 

Complete the analysis by using the equations of statics to compute the 
reaction at B and the shear at A (see Fig. 12.12b). 

0+ IMA = 0

°= RB (20) - 152.25 

Rs = 7.61 kips Ans. 
+ 
t IFy = 0 

VA = 7.61 kips 

y 

1-----L = 20' ------..I 

(a) 

VA =7.61 kips 

(t~~~ 

152.25 

RB=7.61 kips 

(b) 

M 

-152.25 kip·ft 
(c) 

Figure 12.12: (a) Deformed shape; (b) free 
body used to compute VA and RB; (c) shear and 
moment curves. 

e I~ f r ron lu Ii , 71 

Although the supports ru;e constructed in their correct position, girder AB E X AMP L E 1 2 . 7 
of the frame shown in Figure 12.131s fabricated 1.2 in too 10ng.Deter­
mine the reactions created when the frame is connected into the supports. 
Given: EI is a constant for all members, I 240 in4, and E= 29,000 
kips/in2•· [continues on next page] 
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Example 12.7 continues . .. A=: 1.2" 

J 
9' 

1-<----- 18' ---~ 

(a) 

5.96 kips 5.96 kips. 5.96 kips 
95kiPfrl7.95 kiPST lA*{;'~'"'!*'Wfo/~~:/:'clC """'1 t*95 kips 7. 

35,76 kip·ft 71.58 kip·ft 71.58 kip.ft 
-7.95 kips 

71.58 kip.ft ~ 
35.76 kip·ft ~.96 kips 

5.96 kips 

71.58kip·ft ~ 
7.95 kips_ 

9' 

71.58 kip·ft 

Figure 12.13: (a) Girder AB fabricated 1.2 in 
too long; (b) free-body diagrams of beam AB, 
joint B, and column Be used to compute internal 
forces and reactions. 

• 


t 
5.96 kips 

(b) 

Solution 
The deflected shape of the frame is shown by the dashed line in Figure 
12.13a. Although internal forces (axial, shear, and moment) are created 
when the frame is forced into the supports, the deformations produced by 
these forces. are neglected since they are small compared to the 1.2-in 
fabrication error; therefore, the chord rotation "'BC of column Be equals 

. . .!l 1.2 1 
"'BC = L = 9(12) = 90 rad 

Since the ends of girder AB are at the same level, '" AB = O. The unknown 
displacements are BB and ec­

• 
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Using the slope-deflection equation (Eq. 12.16), we express member 

end moments in terms of the unknown displacements. Because no loads 

are applied to the members, all fixed-end moments equal zero. 


2E(240) 	 .. 
(1)MAB = 18(12) (OB) = 2.222EOB 

2E(240) 
MBA = 18(12) (20B) = 4.444EOB (2) 

·1 	 2E(240) [ ( 1 )]
. M BC = 9 (12) 20B + 0C - 3 90 

= 8.889EOB + 4.444EOc - 0.1481E (3) 

2E(240) [ ( 1 )]
MCB = 9(12) 20c + OB - 3 90 

= 8.889EOc + 4.444EOB - 0.1481E (4) 

Writing equilibrium equations gives 


Joint C: MCB = 0 (5) 


Joint B: 
 (6) 


Substituting Equations 2 to 4 into Equations 5 and 6 solving for OB and 

Oc yield 


8.889EOc + 4.444EOB - 0.1481E = 0 


4.444EOB + 8.889EOB + 4.444EOc - O.14iHE = 0 


oB = 0.00666 rad (7)' 


Oc = 0.01332 rad (8) 


Substituting Oc and OB into Equations 1 to 3 produces 


MAB 	= 35.76 kip oft MBA = 71.58 kipoft ADSo 

= -71.58 kipoft MCB = 0MBc 

The free-body diagrams used to compute internal forces and reactions are 

shown in Figure 12.13b, which also shows moment diagrams . 


... ~~~:~~'~,~~;~~~,~;3.~....... ~.......................... ....0 •••••••••••••••••••••••••••••••0 .................. ~ ................................... ; ..... .. 


ftll?:~i:l Analysis of Structures That Are Free to Sidesway 

Thus far we have used the slope-deflection method to analyze indetermi­
nate beams and frames with joints that are free to rotate but which are 
restrained against displacement. We now extend the method to frames 
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p 

(a) 

(b) 

Figure 12.14: (a) Unbraced frame, deflected 
shape shown to an exaggerated scale by dashed 
lines, column chords rotate through a clockwise 
angle t/!; (b) free-body diagrams of columns and 
girders; unknown moments shown in the positive 
sense, that is, clockwise on ends of members 
(axial loads in columns and shears in girder omit­
ted for clarity). 

whose joints are also free to sidesway, that is, to displace laterally. For 
example, in Figure 12.14a the horizontal load results in girder BC dis­
placing laterally a distance .l. Recognizing that the axial deformation of 
the girder is insignificant, we assume that the horizontal displacement of 
the top of both columns equals .l. This displacement creates a clockwise 
chord rotation IjJ in both legs of the frame equal to 

~ 

h. 

where h is the length of column. 
Since three independent displacements develop in the frame [i.e., the 

rotation of joints Band C (OB and Oc) and the chord rotation 1jJ], we 
require three eqUilibrium equations for their solution. Two equilibrium 
equations are supplied by considering the eqUilibrium of the moments 
acting on joints Band C. Since we have written equations of this type in 
the solution of previous problems, we will only discuss the second type 
of eqUilibrium equation-the shear equation. The shear equation is 
established by summing in the horizontal direction the forces acting on 
a free body of the girder. For example, for the girder in Figure 12.14h we 
can write 

-H 2:,Fx = 0 

Vl +V2 + Q = 0 (12.18) 

In Equation 12.18, VI> the shear in column AB, and V2, the shear in col­
umn CD, are evaluated by summing moments about the bottom of each 
column of the forces acting on a free body of the column. As we estab­
lished previously, the unknown moments on the ends of the column must 
always be shown in the positive sense, that is, acting clockwise on the 
end of the member. Summing moments about point A of column AB, we 
compute VI: 

c+ 2:,MA =0 

MAR + MBA - V1h= 0 

MAB + MBA 
= ---'=----"'= (12.19)Vl . h 

Similarly, the shear in column CD is evaluated by summing moments 
about point D. 

c+ 2:,MD = 0 

MCD + MDC - V2h = 0 

MCD + M DC (12.20)V2 = h 

• 
 ..-." ...... ­
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Substituting the values of Vj and V2 from Equations 12.19 and 12.20 into 
Equation 12.18, we can write the third equilibrium equation as 

MAR + MBA MCD + MDc 
h . + h . + Q = 0(12.21) 

Examples 12.8 and 12.9 illustrate the use of the slope-deflection method 
to analyze frames that carry lateral loads and are free to sides way. Frames 
that carry only vertical load will also undergo small amounts of sidesway 
unless both the structure and the loading pattern are symmetric. Exam­
ple 12.10 illustrates this case. 

EXAMPLE 12.8Analyze the frame in Figure 12.15a by the slope-deflection method. E is 
constant for all members. 

IBc= 600 in4 

Solution 
Identify the unknown displacements eB, ec, and A. Express the chord rota­
tions t/I,lB and t/lCD in tenns of A: 

A 
and sot/lAB == 12 Figure 12.15: (a) Details of frame; (b) reactions 

and moment diagrams. 

21.84 kip·ft 

~ -=::::::::::::: 16.76 kip. ft 

21.84 kip·ft 16.76 kip·ft 
6 kips 

12' 

+4.03 kips 

26.45 kip.ft 26.45 kip.!! 

2.57 kips 

, + 18.7 kip.f! j 

't'" 18.7 kip·ft 
r----- 15' -----I 

2.57 kips 
(a) (b) 

[continues on next page] 
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Example 12.8 continues . .. Compute the relative bending stiffness of all members. 

_ EI _ 240E - 20E 
KAB - L - 12 ­

K - El _ 600E - 40E 
BC - L - 15 ­

El 360EK .., ....... = 20E

CD L 18 

If we set 20E = K, then 

KAB = K KeD = K (2) 

Express member end moments in terms bf displacements with slope­
deflection equation 12.16: MNF = (2El/L)(20N+ OF - 3t/JNF) + FEMNF· 
Since no loads are applied to members between joints, all FEMNF = O. 

MAB = 2KAB (OB - 3t/JAB) 

MBA = 2KAB (26B - 3t/JAB) 

. MBc = 2KBc(20B + Oc) 
(3)

MCB = 2KBc(20c + OB) 

MCD = 2KCD(2fJc - 3t/JCD) 

M DC = 2KcD(fJC - 3t/JCD) 

In the equations above, use Equations 1 to express t/JAB in terms of t/JCD' and 
use Equations 2 to express all stiffness in terms of the parameter K. 

MAB = 2K(fJB - 4.5t/JCD) 

MBA = 2K(2fJB - 4.5t/JCD) 

M Bc = 4K(20B + (J.d· 
(4)

MCB = 4K(2fJc Os) 

MCD = 2K(20c - 3t/JCD) 

, 

The equilibrium equations are: 

JointB: MBA + M BC = 0 (5) 

Joint c: Mcs + MCD = 0 (6) 

Shear equation MBA + MAS M CD + MDC 6 

(see Eq. 12.21): 12 + 18 + = 0 (7) 
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Substitute Equations 4 into Equations 5, 6, and 7 and combine terms. 


120B + 40c - 9t/1CD = 0 (5a) 


40B + 129c 6t/1CD 0 (6a) 


. 108 
90B + Mc - 39t/1CD = - K (7a) 

Solving the equations above simultaneously gives 

o _ 2.257 () _ 0.97 t/I _ 3.44 
B- K c- CD­K K 

5.16
Also, t/lAB = 1.5t/1CD = K 
Since all angles are positive, all joint rotations and the sidesway angles 
are clockwise. ­

Substituting the values of displacement above into Equations 4, we 
establish the member end moments. 

MAE -26.45 kip·ft MBA = -21.84 kip·ft Ans. 

MBc = 21.84kip·ft MCB = 16.78 kip·ft 

MCD = 16.76 kip·ft MDc = -18.7 kip·ft 

The final results are summarized in Figure 12.15b. 

II! ., J 11it .. 

Analyze the frame in Figure 12.100 by the slope-deflection method. Given: EXAMPLE 12.9 
El is constant for all members. 

Solution 
Identify the unknown displacements; 0B. Oc, and t/lAB' Since the cantilever 
is a determinate component of the structure, its analysis does not have to 
be included in the slope-deflection formulation. Instead, we consider the 
cantilever a device to apply a vertical load of 6 kips and a clockwise 
moment of 24 kip·ft to joint C. ' 

Express member end moments in terms of displacements with Equa­
tion 12.16 (all units in kip·feet). 

2EI - 3(8)2 

MAB = 8(OB - 3t/1AB) - 1"2 


2El - 3(8)2 

MBA = 8 (20 B - - 3t/1AB) + 12 (1)* 


"'TWo additional equations for M/!c and Mc/! on page 468.. [continues on next page] 
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Example 12.9 continues . .. 

2ldps/ft 

1+---12'--~'';''~'-

(c) 

Cb) 

(a) 

Figure 12.16: (a) Details of frame: rotation of 
chord IjIAlJ shown by dashed line; (b) moments 
acting on joint B (shear and axial forces omitted 
for clarity); (c) moments acting on joint C (shear 
forces and reaction omitted for cllmty); Cd) free 
body of column AB; (e) free body of girder used 
to establish third equilibrium equation. Vl~~i!rr=~~~ 

MB.4 

(e) 

Write the joint equilibrium equations at Band C. 
Joint B (see Fig. 12.16b): 

+0 Y.MB = 0: MBA + MEc = 0 (2) 

Joint C (see Fig. 12.16c): 

+0 Y.Mc = 0: 'MCB -24 = 0 (3) 

. Shear equation (see Fig. 12.16d): 

0+ Y.MA = 0 MBA + MAB + 24(4) - V1(8) 0 

8' 

Cd) 

solving for VI gives (4a) 

Isolate the girder (See Fig. 12.16e) and consider equilibrium in the 
horizontal direction. 

-H Y.Fx = 0: therefore VI = 0 (4b) 
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Substitute Equation 4a into Equation 4b: 

MBA + MAB + 96 = 0 (4) 

Express eqUilibrium equations in terms of displacements by substituting 
Equations 1 into Equations 2,.3, and 4. Collecting terms and simplifying, 
we find .., 	 . 

192 
lOeB - 2ee - 9r/JAB 

EI 

144 
eB ­ 2@c 

EI 

384 
3eB - 6r/JAB 

EI 

Solution of the equations above gives 

() _ 53.33 45.33 90.66 
B - EI ()c = r/JABEI EI 

Establish the values of member end moments by substituting the val­
ues of ()B' OCt and r/JAB into Equations 1. . 

M = 
AB 

2EI [53.33
8 EI 

_ (3)(90.66)]
EI 

_ 16 = -70.67 kip.ft 

MBA 
2EI [. (2)(53.33) 

= 8 EI -
(3)(90.66)]'

EI + 16 = 
. 

-25.33 kip·ft 
6 

. 2EI [(2)(53.33) 45.33 
MBe = 12 EI + EI 

M = 2EI [(2)(45.33) + 53.33 
CB 12 EI EI 

= 25.33 kip·ft 

= 24 kip.ft 

-4.11 

25.33~ 
~ 

-24 

shear 
(kips) 

moment 
(kip·ft) 

I 

I 

After the end moments are established, we compute 	 B C25.33 
the shears in all members by applying the equations D 

X"l ~ ",:"....of equilibrium to free bodies of each member. Final W 
results are shown in Figure 12.16f. ~ t 

lO.n kips 
24 kips 

24 kips 70.67 
kip·ft ~M = 70.67 kip.ft 

shear moment 
4.11 kips

Figure 12.16: (f) Reactions and shear and 

moment curves. (I) 


ill t II 
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EXAMPLE 12.10 

p= 12 kips 


115'-1----301'---1 


31 

1+----45'----+1 

(a) 


p= 12 kips 


1Y~';" ,.. <L""" ,<,' I·"','i.,:'i.V" Q 
-----VI --':"""'V2+MllA +MCD 

(b) 

Figure 12.17: (d) Unbraced fuunepositive chord 
rotations assufued for co!umns(see the dashed 
lines), deflected shape shown in (d); (b) free bodies 
of columns and girder used to establish the shear 
equation. 

Analyze the frame in Figure 12.17 a by the slope-deflection method. Deter­
mine the reactions; draw the moment curves for the members, and sketch 
the deflected shape. If I = 240 in4 and E = 30,000 kips/in2, determine 
the horizontal displacement of joint B. 

Solution 
Unknown displacements are (JB' (Je, and 1/1. Since supports atA are fixed, 
(JA and (JD equal zero. There is. no chord rotation of girder Be. 

Express member end moments in terms of displacements with the 
slope-deflection equation. Use Figure 12.5 to evaluate FEMNF. 

2EI 
MNF = L (20N + OF - 3I/1NF) + FEMNF (12.16) 

Pb2a 12(30)2(15) Pa2b 12(15)2(30) 
FEMBC = -IF = (45)2 FEMCD = IF = . (45)2 

== -80 kip·ft = 40 kip·ft 

To simplify slope-deflection expressions, set EI/15 = K. 

2EI 
MAB = 15(eB - 31/1) = 2K(eB - 31/1) 

. 2EI 
MBA = 15 (2e B - 31/1) =2K(20B 31/1) 

2EI . 2 
MBC = 45 (2eB + ec) - 80 = 3K(2(JB + (Jc) 80 

(1)
2EI 2 

MCB = 45 (2e c + (JB) + 40 = 3K(2(Je + (JB) + 40 

2EI . 

MCD = 15 (2(Je - 31/1) = 2K(ee - 31/1) 


2EI 
MDe = 15 (()e- 31/1) = 2K(()e 31/1) 

The equilibrium equations are: 

Joint B: MBA + MBe = 0 (2) 

JointC: MeB +McD = 0 (3) 

Shear equation (see the girder in Fig. 12.17b): 

-H -:£Fx = 0 V1 + V2 = 0 (4a) ! 
I 
i 
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MCD + M Dcwhere (4b)V2 = 15 

Substituting VI and V2 given by Equations 4b into 4a gives 

MBA +MAB + MCD +MDC = 0 (4) 

Alternatively, we can set Q = 0 in Equation 12.21 to produce Equation 4. 
Express equilibrium equations in terms of displacements by substi­

tuting Equations 1 into Equations 2, 3, and 4. Combining terms and sim­
plifying give 

8KOB + KO c - 9KI/J 120 

2KOB + 16KOc - 3KI/J = -120 

KOB + KOc 4KI/J = 0 

Solving the equations above simultaneously, we compute 

10 
(5)I/J = 3K 

Substituting the values ofthe 0B' Oc, and I/J into Equations 1, we com­
pute the member end moments below. 

MAB = 19.05 kip·ft MBA = 58.1 kip·ft 

MCD = -44.76 kip·ft M DC ::= - 32.38 kip·ft (6) 

MBC - 58.1 kip·ft MCB = 44.76 kip·ft 

Member end moments and moment curves are shown on the sketch in 
Figure 12.17: (c) Member end moments and Figure 12.17 C; the deflected shape is shown in Figure 12.17 d. 
moment curves (in kip'ft); (d) reactions and 
deflected shape. . 

66.4 

~. moment p= 12 kipsV ~(kip.ft)_' v,;~ 

-58.1 -44.76 

• 

" 

..." ',' I 
': I 

5~/ l~'; .!.:...; '~Ii"'''+''U····?·''!'l*f.:.
~. ..". 

5.14 kips 5.14.kips 
f¥\,,,.~ { ~ 

• : AD!!. 19.05 kip.ft'-Y ~ 32.38 kip.ft
19.05···· .% 32.28 

8.3 kips 3.7 kips 
(d)(c) 

[continues on next page] 
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Example 12.10 continues . .. Compute the horizontal displacement of joint B. Use Equation 1 for 
MAE' Express all variables in units of inches and kips. 

2El 
(7)MAB = 15(12) (8E 31/1) 

From the values in Equation 5 (p. 485), 8B = 5.861/1; substituting into 
Equation 7, we compute 

2(30,000)(240) '586'/' - 3,/')19.05(12) 15(12) l· 'f'. 'f' 

1/1 0.000999 rad 

~ 
1/1= ~ = I/1L = 0.000999(15 X 12) = 0.18 in Ans. 

L 

12.6 Kinematic Indeterminacy 

T6amilyze a structure by the flexibility method, we first established the 
degree of indeterminacy of the structure. The degree of statical indeter­
minacy determines the number of compatibility equations we must write 
to evaluate the redundants, which are the unknowns in the compatibility 
equations. 

In the slope-deflection method, displacements-both joint rotations 
and translations-are theul1knowns. As a basic step in this method, we 
must write equilibrium equations equal in number to the independent 
joint displacements. The number of independent joint displacements is 
termed the degree of kinematic indetenninacy. To determine the kine­
matic indeterminacy; we simply count the number qf independent joint 
displacements that are free to occur. For example, if we neglect axial 
deformations, the beam in Figure 12.18a is kinematically indeterminate 
to the first degree. If we were to analyze this beam by slope-deflection, 
only the rotation of joint B would be treated as an unknown. 

If we also wished to consider axial stiffness in a more general stiff­
ness analysis, the axial displacement at B would be considered an addi­
tional unknown, and the structure would be. classified as kinematically 
illdeterminate to the second degree. Unless otherwise noted,. we will neg­
lect axial deformations in this discussion. 

In Figure 12.18b the frame would be classified as kinematically inde­
terminate to the fourth degree because joints A, B, and C are free to rotate . 

'a:.,"".- _ 
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and the girder can translate laterally. Although the number of joint rota­
tions is simple to identify, in certain types of problems the number of inde­
pendent joint displacements may be more difficult to establish. One.method 
to determine the number of independent joint displacements is to introduce Ca)
imaginary rollers as joint restraints. The number of rollers required to 
restrain the joints of the structure from translating equals the number of 
independent joint displacements. For example, in Figure 12.18c the struc­ i 

: .
turewould be classified as kinematically indeterminate to the eighth 
degree, because sixjoint rotations and two joint displacements are pos­
sible. Each imaginary roller (noted by the numbers 1 and 2) introduced 
at a floor prevents all joints in that floor from displacing laterally. In Fig­
ure 12.18d the Vierendeel truss would be classified as kinematically 
indeterminate to the eleventh degree (i.e., eight joint rotations and three 
independent joint translations). Imaginary rollers (labeled 1, 2, and 3) 
added at joints E, C, and H prevent all joints from translating. 

Summary 
IThe slope-deflection procedure is an early classical method for 
Ianalyzing· indeterminate beams and rigid frames. In this method 


joint displacements are the unknowns, 

For highly indeterminate structures with a large number of joints, 

the slope-deflection solution requires that the engineer solve a series 

·of simultaneous equations equal in number to the unknown 

displacements-a time-consuming operation. While the use of the 

slope-deflection method to analyze structures is impractical given 

the availability of computer programs, familiarity with the method 

provides students with valuable insight into the behavior of structures. 


• 	 As an alternate to the slope-deflection method, moment distribution 
was developed in the 1920s to analyze indeterminate beams and . 

Figure 12.18: Evaluating degree of kinematic
frames by distributing unbalanced moments at joints in an artificiruly indeterminacy: (a) indeterminate first degree,
restrained structure. While this method eliminates the solution of neglecting (t"{ial deformations; (b) indeterminate 

simultaneous equations, it is still relatively long, especially if a fourth degree; (e) indeterminate eighth degree, 

large number of loading conditions must be considered. Nevertheless, imaginary rollers added at points 1 and 2; (d) inde­


terminate eleventh degree, imaginary rollers
moment distribution isa useful tool as an approximate method of 
added at points 1, 2, and 3.

analysis both for checking the results of a computer analysis and in 

making preliminary studies. We will use the slope-deflection equation 

(in Chap. 13) to develop the moment distribution method. 


D 

(b) 

(e) 

(d) 

• 	 A variation of the slope-deflection procedure, the general stiffness 
method, used to prepare general-purpose computer programs, is 
presented in Chapter 16. This method utilizes stiffness coefficients~ 
forces produced by unit displacements of joints. 

·IIL..,.. __ 
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·~·I ..··P.·RQJ~..~.~.M.$....................:......................:............................................................................................................................................. 

P12.1 and P12.2. Using Equations 12.12 and 12.13, 
compute the fixed end moments for the fixed-ended 
beams. See Figures P12.1 and PI2.2. 

P P 

C :> 
FEMAB L 

2 .1. L 
'4 

FEMBA 

P12.1 

. P12.2 

P12.3. Analyze by slope-deflection and draw the shear 
and moment curves for the beam in Figure P12.3. Given: 
E1 = constant. 

p= 16 kips 

---If---8' .. 1. 4' 

P12.3 

P12.4. Analyze the beam in Figure P12A by slope­
deflection and draw the shear and moment diagrams for 
the beam. E1 is constant. 

10 m --,....1.;.-----14 m ---+I 

P12.4 

P12.S. Analyze by slope-deflection and draw the shear 
and moment curves for the continuous beam in Figure 
PI2.5. Given: EI is constant 

. p= 30 kips 

P12.S 

P12.6. Draw the shear and moment curves for the frame 
in Figure P12.6. Given: EI is constant. How does this 
problem differ from Problem P12.5? 

P=30kips 

w = 5 kips/ft 

\ B~~=rr~~~~~~C~. 

T
20' 

L 
,I. 14' 

P12.6 
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P12.7. Compute the reactions atA and CinFigureP12.7. P12.9. (a) Under the applied loads support B in Figure 
Draw the shear and moment diagram for member Be. P'I2.9 settles 0.5 in. Detennine all reactions. Given: E = 
Given: 1= 2000 in4 and E= 3,000 kips/in2. 30,000 kips/in2, 1= 240 in4. (b) Compute the deflection 

of point C. 

1 
J 
12' 

P12.7 

P12.S. Use the slope~deflection method to detennine the 
vertical deflection at B and the member end moments at 
A and B for the beam in Figure PI2.8. El is a constant. 
The guide support at B pennits vertical displacement, but 
allows no rotation or horizontal displacement of the end 
ofthe beam. 

p 

A B 

• 


~I·--------L----~~.I 

P12.B 

• 


P12.9 

P12.10. In Figure. P12.1O, support A rotates 0.002 rad 
and support C settles 0.6 in. Draw the shear and moment 
curves. Given: I = 144 in4 and E = 29,000 kips/in2. 

I 
i 

\1 0.002 rad 

\ 


l-- 12' --1<0--- 15' --_ 

P12.10 

I .. 

I • 

I 

I ~ 

• 




490 Chapter 12 Analysis of Indeterminate Beams and Frames by the Slope-Deflection Method 

In ProblemsP12.11 to P12.I4, take advantage of sym­
metry to simplify the analysis by slope deflection. 

P12.11. (a) Compute all reactions and draw the shear 
and moment curves for the beam in Figure PI2.II. Given: 
EI is.constant. (b) Compute the deflection under the load. 

p= 18 kips 

P12.11 

P12.12. (a) Determine the member end moments for the 
rectangular ring in Figure PI2.12, and draw the shear and 
moment curves for members AB and AD. The cross sec­
tion of the rectangular ring is 12 in x 8 in and E == 3000 
kipS/in2. (b) What is the axial forcein member AD and 
in member AB? .. 

• 


A 

w:;; 2.kips/ft .. 

11-'--- 12' ----+1.1 

P12.12 

• 


P12.13. Figure P12.13 shows the forces exerted by the 
soil pressure on a typical I-ft length of a concrete tun­
nel as well as the design load acting on the top slab. 
Assume a fixed-end condition at the bottom of the walls 
at A and D is produced by the connection to the foun­
dation maLEI is constant. 

18' 
1 
J 

P12.13 

P12.14. Compute the reactions and draw the shear and 

moment curves for the beam in Figure PI2.14. Also E = 

200 GPa and I = 120 X 106 mro4• Use symmetry to 

simplify the analysis. Fixed ends at supports A and E. 


P12.14 

....~ ...... - • • 

http:ProblemsP12.11


PI2.1S. Consider the beam in Figure P12.14 without 

the applied load. Compute the reactions and draw the 


. shear and moment curves for the beam if support C settles 

24 nun and support A rotates counterclockwise 0.005 rad. 


PI2.16. Analyze the frame iil Figure P12.16. Given: El 
is constant for all members. Use symmetry to simplify 
the analysis. 

1 
12m 

J
A n 

P12.16 

PI2.I7. Analyze the frame in Figure PI2.17. Given: EI 
is constant. Fixed ends at A and D. 

B C 
30kN 

1 
12m 

nJ 
20m 

P12.17 

• 
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I • 

;PI2.1S. Analyze the structure in Figure P12.1S. In 
addition to the applied load, support A rotates clockwise 
by 0.005 rad. Also E = 200 GPa and I = 2S X 106 mm4 

for all members. Fixed end at A. 

1 

3m 

1 

J 
3m 

P12.1B 

P12.19.' Analyze the frame in FlgureP12.19. Giv~n:E! 
is constant. Fixed supports' at A and B. 

50kN 50kN 

6kN/m 

1 
J 
6m 

6m~--I 

P12.19 

• 
 • 


http:FlgureP12.19
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P12.20. (a) Draw the shear and moment curves for the 
frame in Figure P12.20. (b) Compute the deflection at 
midspan of girder Be. Given: E = 29,000 ldps/in2. 

8 kips/ft 

lee = 1200 in4 

18'~-+---

P12.20 

P12.21. Analyze the frame in Figure P12.21. Compute 
all reactions. Also I BC = 200 in4 and lAB == ICD == 150 in4. 
E is constant. 

• 

c 

• 

P12.21 

P12.22. Analyze the frame in Figure P12.22. Also EI is 
constant. Notice that sidesway is possible because the 
load is unsymmetric. Compute the horizontal displace­
ment of joint B. Given: E = 29,000 ldps/in2 and I = 240 
in4 for all members. 

w=4 kips/ft 

B 

A 

1------ 20'-----1 

P12.22 

P12.23. Compute the reactions and draw the shear and 
moment diagrams for beam Be in Figure P12.23. Also 
EI is constant. 

c 
35kN i 

3m 

t
6m 

L A 

1----- 9 m ----I 

P12.23 

! 
i 

i 
I 

• 
 • 
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P12.24. Determine all reactions in Figure P12.24.Draw 
the shear and moment diagrams for member Be. The 
ends of the beams at points A and e are embedded in 
concrete walls that produce fixed supports. The light 
baseplate at D may be treated as a pin support. AlsoE! 
is constant. 

1 
J 
4m 

4m .\ 8m---­

P12.24 

P12.2S. Determine all reactions at points A and D in 
Figure P12.2S. E! is constant. 

60kN 
c 1 

J 
6m 

8m 

l A 

1..-\.----10 m -----I 

P12.2S 

P12.26. If support A in Figure P12.26 is constructed 
0.48 in too low and the support at e is accidentally con­
structed at a slope of 0.016 rad clockwise from a verti­
cal axis through e, determine the moment and reactions 
created when the structure is connected to its supports. 
Given: E = 29,000 kips/in2. 

a= 0.016 rad -1 "­
I 

C{B 1= 300 in4 
I 

AL 
1------- 24' -'------I 

P12.26. 

P12.27. If member AB in FigureP12.27 is fabricated i 
in too long, determine the moments and reactions cre­
ated in the frame when it is erected. Sketch the deflected 
shape. E= 29,000 kipslin2. 

• 


B 1= ~-+O in4 cr 
12' 1= 120 in~ 

L A 

24' .1 

P12.27 

• 


http:FigureP12.27
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P12.28. Set up .the equilibrium equations required to analyze. the frame in Figure 
P12_28 by slope deflection. Express the equilibrium equations in terms of the appro­
priate displacements; E1 is constant for all members. 

12' 

2 kips . D-4 
8' 

\..- 16' ---I ­

P12.28 

P12.29. Analyze the frame in FigureP12.29. Also 1:.,1 is constant. Fixed supports 
atA and D. 

Sm 

c 

Sm 

A J 

P12.29 

http:FigureP12.29


" 
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P12.30. Determine the degree of kinematic indeterminacy, for each structure in 
Figure P12.30. Neglect axial deformations. 

(a) 

(b) 

(c) 

(d) 

P12.30 
.......H.uu.............n.H ..................... ~ ••u.uao.nH..... ............. ,............. u ... u ...............................................uu......................nnu.......................................UH............... . 
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East Bay Drive, a post-tensioned concrete frame bridge, 146 ft long, mainspan 60 ft, edge of concrete 
girder 7 in thick . 

.. .. ...\~ .. .......... ---­


