HYDROSTATIC FORCES ON SURFACES

Remember the second law of Pascal -

In a container, pressure acts perpendicular to the boundary

In this lecture we will investigate how forces act on surfaces -

- Nature of plane or curved surface
- Total force
- Center of force

Remember $- F = P \times A$

Example Problem 4.2:

What is the pressure and force at the bottom of the containers??

$$P = 0 + \gamma o *2.4 + \gamma w * 1.5$$

$$\gamma o = 9.81 * 0.90 = 8.83 \text{ kN/m3}$$

$$P = 0 + 8.83 *2.4 + 9.81 * 1.5$$

$$P = 0 + 21.2 + 14.7 = 35.9 \text{ kPa (gage)}$$

$$F = P*A = 35.9*A$$

$$= 35.9 * \pi (3.0)^{2}/4$$

$$= 253.8 \text{ kN}$$

Force and pressure for container 2 will be the same! – Pascal's paradox!

Force and pressure are being felt by the insides of the container.

However the weight of the two containers will be different

W1 =
$$\pi (3.0)^2/4 * [2.4*8.83 + 9.81*1.5]$$

= 253.8 kN

Container 2

Volume of frustum of cone =

$$V = (\pi/12) * h * (D^2 + Dd + d^2)$$

D1 = 1.2D2 = 2.307D3 = 3.0

W2 = V1 * 8.83 + V2 * 9.81

= $(\pi/12)$ * 2.4 * $(2.307^2 + 2.307^*1.2 + 1.2^2)$ * 8.83 + $(\pi/12)$ * 1.5 * $(3^2 + 3^*2.307 + 2.307^2)$

= 134.7 kN

Forces on rectangular walls

Hoover dam! Water depth ~ 720 ft. Pressure at bottom ??????

Problem 4.4

Determine the force and center of force on a WALL if -

Fluid = gasoline = sg = 0.68

Total depth = 12 ft Length of wall = 40 ft

Average pressure = $\gamma * h/2$

= 0.68 * 62.4 * 12/2 = 254.6

Force on wall = F = p*A = 254.6 * 12*40 = 122,204 lb

Center of pressure = 12/3 from bottom

= 4 ft from bottom

Problem 4.5

Dam retaining water. Dam length = 30.5 m Depth = 8m Dam wall inclined at 60 degrees Calculate force and location of force?

Average pressure = $\gamma * h/2$

= 9.81 * 8/2 = 39.24

Length along which pressure acts =

=L=h/sin θ

 $= 8 / \sin 60^{\circ}$

= 9.24 m

Force = pA = 39.24 * 9.24 * 30.5

= 11060 kN

Center of pressure =

h/3 from bottom = 8/3 = 2.67 m

or

L/3 along inclined plane = 9.24/3 = 3.08 m

Force on a submerged plane area

Find the force on the gate and the center of pressure.

<u>Steps –</u>

- 1. find the centroid of the area
- 2. find the distance from the top of fluids to centroid = hc
- 3. determine the pressure at the centroid
- 4. determine the force at the centroid
- 5. calculate the moment of inertia of the area
- 6. compute the center of pressure

centroid of given rectangle = 1.2/2 = 0.6 m

hc = 3.0 + 0.6 = 3.6 m

pressure = $p = \gamma * hc$

 $= p = 9.81 * 3.6 = 35.32 \text{ kN/m}^2$

Force = pA

= 35.32 * 1.2 * 2 = **84.7** kN

Now,

Moment of inertia of rectangle = $Ic = BH^3/12$

 $= 2 * 1.2^{3}/12 = 0.288$

The center of pressure =

= hc + Ic/(hc*A)

= 3.6 + 0.288/(3.6*1.2*2) = 3.633 m

7. Force on a submerged plane area

Problem 4.6:

<u>STEPS</u>-

- 1. determine the point where the angle of inclination intersects the fluid surface
- 2. locate the centroid of the surface
- 3. determine hc vertical distance from fluid surface to centroid
- 4. determine Lc inclined distance to centroid hc = $Lc \sin\theta$
- 5. calculate area A
- 6. calculate force on area = $F_R = \gamma hc^*A$
- 7. calculate the moment of inertia = Ic
- 8. calculate the center of pressure = Lp = Lc + Ic/(Lc*A)
- 9. Sketch F_R acting on the area
- 10. $hp = Lp \sin\theta$
- 11. or hp = hc + Ic $\sin^2\theta/(hc^*A)$

GIVEN – Tank with oil, sg = 0.91

Rectangular gate B = 4ft, H = 2ft

Inclined wall of tank = θ = 60 degrees

Centroid of the gate is = hc = 5ft from the surface

Calculate -

- The force on the gate
- The center of pressure

1. draw a sketch of the system

2. identify the centroid of the gate based on its geometry

3. $h_c = 5 ft$

4. determine L_c

 $h_c/L_c = \sin \theta$

 $L_c = h_c / \sin \theta = 5 / \sin 60^\circ = 5.77 \text{ ft}$

- 5. area of gate = $A = BH = 4 * 2 = 8ft^2$
- 6. Determine force on the gate

 $\mathbf{Fr} = \gamma_0 \mathbf{h}_c \mathbf{A} = 0.91 * 62.4 * 5 * 8 = 2270 \, \mathbf{lb}$

7. Determine center of pressure

moment of inertia of gate = $I_c = BH^3/12 = 4 * 2^3 / 12 = 2.67 \text{ ft}^4$

Center of pressure = $L_p = L_c + (I_c/L_c*A)$

= 5.77 + (2.67/5.77 * 8) = 5.77 + 0.058 = 5.828 ft

Example

Force = $\gamma h_c A = 62.4 * (6+1) * 0.5 * 2 * 3$

= **1310 lb**

Center of pressure = hp = hc + Ic/(hc*A)

 $= 7 + [2*3^3/36/(7*0.5*2*3)] = 7.07$ ft

Assignment # 3:

- 4.9E
- 4.11M
- 4.17M
- 4.20M

Distribution of Force on a Curved surface

First step – isolate the portion of interest and visualize the forces

Problem 4.8:

h1 = 3.00 mh2 = 4.5 mw = 2.5 m

liquid = water

Compute the **horizontal and vertical components** <u>on the</u> <u>curved surface</u> and the resultant force.

1. the isolated volume is shown below –

Determine the volume above the curved surface

Areas -

Area = A1 + A2 =
$$(3 * 1.5) + \frac{1}{4} (\pi * 1.5^2)$$

$$= 4.5 \text{ m}^2 + 1.767 \text{ m}^2 = 6.267 \text{ m}^2$$

Volume = area x width = $6.267 * 2.5 = 15.67 \text{ m}^3$

Therefore weight = Fv = 15.67 * 9.81 = 153.7 kN

Determine the centroid of the vertical force

For A1, x1 = 0.75

For A2, $x^2 = 0.424$ R (formula for centroid of quadrant)

= 0.424 * 1.5 = 0.636 m

Determine the centroid of the area A1 and A2 =

$$x = (A1x1+A2x2)/(A1+A2) = 0.718 m$$

Now let's compute the horizontal force

Depth to the centroid of projected area

 $h_c = h1 + s/2 = 3.0 + 0.75 = 3.75 m$

Magnitude of the horizontal force =

Fh = γ h_c * sw = 9.81* 3.75*1.5*2.5 = **138.0** kN

Depth to the line of action of the horizontal force

 $hp = h_c + s^2/12 h_c = 3.75 + 1.5^2 / (12*3.75) = 3.80 m$

Resultant Force = $Fr = (Fv^2 + Fh^2)^{1/2}$

$$= (153.7^2 + 138^2)^{1/2}$$

= **206.5 kN**

Angle of inclination of the resultant force = \tan^{-1} (Fv/Fh)

 $= \tan^{-1} (153.7/138.0)$

= **48.1**°

Assignment # 4:

• 4.47M