NODAL ANALYSIS

Nodal Analysis Method

It is one of the best circuit analysis methods. It depends on KCL. Label the voltages at every node and apply KCL with the following considerations:-

- 1- Select one of the nodes as node Reference (It is better to be the node with the largest number of branches).
- Consider the voltage of the reference node to be zero. Any other node voltage is measured with respect to this reference node voltage
- Select the current direction out of the nodes, and if there is a source with known current direction, then this direction could be considered.

Example of Basic of Nodal analysis

• Use Nodal analysis to write the equations of this circuit

Select node 4 as reference node with voltage 0 V₁, V₂, V₃ are voltages of node 1,2, and 3

Example of Basic of Nodal analysis

Apply KCL to node 1:

Apply KCL to node 2:

Apply KCL to node 3:

These 3 equations describe the circuit with three unknown values V_1 , V_2 , and V_3 . So if these voltages are found then it is possible to find all the branch currents.

Matrix Form of Nodal Analysis

• These equations can be arranged in form of matrix equation as follows:

$$\begin{bmatrix} \frac{1}{R} \end{bmatrix} \begin{bmatrix} V \end{bmatrix} = \begin{bmatrix} I \end{bmatrix}$$
$$\begin{bmatrix} G \end{bmatrix} \begin{bmatrix} V \end{bmatrix} = \begin{bmatrix} I \end{bmatrix}$$

[G] is conductance matrix it contains the reciprocal of the circuit resistances In details, the above equation can be written as:

Matrix Form of Nodal Analysis

Or in conductance form as:

 $\begin{bmatrix} G_1 + G_2 + G_4 & -G_2 & 0 \\ -G_2 & G_2 + G_4 + G_5 & -G_4 \\ 0 & -G_4 & G_4 + G_6 + G_7 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} G_3 E_1 \\ 0 \\ G_7 E_3 - G_4 E_2 \end{bmatrix}$

[G] or [1/R] can be obtained directly from the circuit as follows:

1- G_{ii} the diagonal elements represent the sum of the all resistance inverse's in the branches connected to node "i" 2- G_{ij} or G_{ji} is the sum of the resistance inverse's of the branches connected between node "i" and "j" this element is always negative.

3- [V] vector of the node voltages

4- [I] vector of the node currents from sources: =algebraic sum of the current of sources whose branches are connected to the considered node

Nodal analysis Example1

Use nodal analysis to find all branch currents. 2Ω $\bigcirc 123$ 4Ω

Solution We have only two nodes, and one of them reference therefore

$$\left[\frac{1}{2} + \frac{1}{4} + \frac{1}{4}\right] [V_1] = \left[\frac{8}{4} + \frac{20}{2}\right]$$

4

$$i_{1} = \frac{20 - 12}{2} = 4 \ Amps$$
$$i_{2} = \frac{12 - 8}{4} = 1 \ Amps$$
$$i_{3} = \frac{12}{4} = 3 \ Amps$$

Nodal analysis Example 2

• Find the node voltages and branch currents

Solution:

$$\begin{bmatrix} \frac{1}{6} + \frac{1}{4} + \frac{1}{5} & -\frac{1}{5} \\ -\frac{1}{5} & \frac{1}{5} + \frac{1}{2} + \frac{1}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} \frac{20}{6} \\ -\frac{10}{2} \end{bmatrix} \quad \text{or} \quad 20 \sqrt{\frac{1}{4}} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} \sqrt{\frac{2}{2}} \sqrt{\frac{2}{2}} \sqrt{\frac{1}{4}} \sqrt{\frac{2}{2}} \sqrt{\frac{2}{2}} \sqrt{\frac{1}{4}} \sqrt{\frac{1}{4}} \sqrt{\frac{2}{2}} \sqrt{\frac{1}{4}} \sqrt{\frac{1}{4}} \sqrt{\frac{2}{2}} \sqrt{\frac{1}{4}} \sqrt{\frac{1}{4}} \sqrt{\frac{1}{4}} \sqrt{\frac{2}{4}} \sqrt{\frac{1}{4}} \sqrt{\frac$$

Solve the above equation to obtain

$$0.62V_1 - 0.2V_2 = 3.3$$
$$-0.62V_1 + 1.03V_2 = -5$$

or V_1 =6.6 volt, V_2 =-4 volt

Find branch currents??

Nodal analysis Problem

• Find V1 and V2

Nodal analysis

Circuits with dependent current sources

 The presence of dependent current sources may destroy the symmetrical form of the nodal equations that define the circuit so KCL should be used directly on the selected node (instate of directly writing the equations)

Circuits with dependent current sources Example1 Find the node voltages in the following network and write the matrix

form of the equations:

The KCL at node 1 is:

$$(V_1 - V_2) / R_1 + V_1 / R_2 = I_1$$

 $(1 / R_1 + 1 / R_2) V_1 - (1 / R_1) V_2$ or

Circuits with dependent current sources Example1

For the previous example if

I₁ = 4mA, β = 5 R₁ = 12 kΩ, R₂ = 6 kΩ and R₃ = 6 kΩ. Find the nodal voltages and branch currents, assuming the given current direction

Answer: $V_1 = 8 V$, $V_2 = -24 V$ $\begin{pmatrix} (1 / R_1 + 1 / R_2) & -1 / R_1 \\ \beta / R_2 - 1 / R_1 & (1 / R_1 + 1 / R_3) \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} I_1 \\ 0 \end{pmatrix}$

Problem 2

if $I_1 = 4mA$, $g = 0.1mS R_1 = 12 k\Omega$, $R_2 = 6 k\Omega$ and $R_3 = 6 k\Omega$

answer: $V_1 = 15.429 V$ $V_2 = -1.714 V$

Nodal analysis: circuits containing independent voltage sources- super node

- This section is concerned with the case when a voltage source is connected directly between two unknown nodes and there is no series resistance with the source.
- In this case, a super node is considered, where the two nodes and the voltage source is considered as one node, then KCL is applied to this node. In addition the constrain between the two nodes V_A-V_B =the voltage source is considered one equation, the other nodes in the circuit is treated normally with KCL

Nodal Analysis: Super Node

For the shown circuit find the voltage at each node-

Consider the super node enclosed by the dashed circle. The KCL is:

$$-I_{1} + V_{1} / R_{2} + V_{2} / R_{3} + I_{2} = 0, \text{ or} (1/R_{2})V_{1} + (1/R_{3})V_{2} = I_{1} - I_{2} ...(1)$$

The constrain between the voltage nodes 1 and 2;result in:

$$V_1 - V_2 = V_8 \dots (2)$$

The two equations describe the system in two unknowns, which can be solved to determined

$$\begin{pmatrix} 1 / R_2 & 1 / \\ & R_3 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} V_1 \\ & V_2 \end{pmatrix} = \begin{pmatrix} I_1 - I_2 \\ & V_3 \end{pmatrix}$$

Nodal Analysis: Super Node

For the shown circuit if $I_1 = 6mA$, $I_2 = 4mA$, $V_S = 6 V$ $R_2 = 6 k\Omega$ and $R_3 = 12 k\Omega$. Find the node voltages and the current through the resistors R_2 and R_3 answer: $V_1 = 16 V$, $V_2 = 4 V$

Nodal analysis: circuits containing dependent voltage sources

Find the node voltages and branch currents in the shown circuit

If $I_1 = 4mA$, $I_2 = 2mA$, $\mu = 5 R_2 = 6 k\Omega$ and R3 = 6 k Ω . Find V₁ and V₂. Answer V₁ = - 4 V, V₂ = 16

Nodal analysis: circuits containing dependent voltage sources

Find the node voltages for the shown circuit

 I_1 = 4mA, I_2 = 2mA, β = 5 k Ω ,R $_2$ = 12 k Ω and R $_3$ = 6 k Ω Answer: V₁ = 9 V, V₂ = 7.5 V

Nodal analysis Problems

$$(v_1 - v_3)G_1 + (v_1 - v_2)G_2 - i_A = 0$$

The constraint equation for the supernode is

$$v_2 - v_3 = v_A$$

And the KCL equation for the supernode is

$$(v_2 - v_1)G_2 + v_2G_3 + (v_3 - v_1)G_1 + v_3G_4 = 0$$

The three equations will yield the node voltages.

and V_4 are known and the node voltages V_1 and V_3 are constrained by the equation

 $V_1 - V_3 = 12$

Since we want to find the current I_o , V_1 (in the supernode containing V_1 and V_3) is written as $V_3 + 12$. The KCL equation at the supernode is $\frac{V_3 + 12 - (-6)}{2k} + \frac{V_3 + 12 - 12}{2k} + \frac{V_3 - (-6)}{1k} + \frac{V_3 - 12}{1k} + \frac{V_3}{2k} = 0$ Solving the equation for V_3 yields $V_3 = -\frac{6}{7} V$ I_o can then be computed immediately as $I_o = \frac{-\frac{6}{7}}{2k} = -\frac{3}{7} \text{ mA}$

Nodal analysis

Use nodal method to determine the current I_0 . Answer: I_0 =3.8 mA

Use nodal method to determine the current I_0 .

KCL applied to the second nonreference node yields

$$\frac{V_2 - 3}{3k} + \frac{V_2}{6k} = 2I_3$$

where the controlling equation is

 $I_x = \frac{V_2}{6k}$

solving these equations yields $V_2 = 6$ V and, hence,

 $I_o = \frac{3-6}{3k} = -1 \text{ mA}$

Nodal analysis

Use nodal method to determine the current I_0 .

 $V_3 = 6 \text{ V}, V_2 = V_x,$

a supernode exists between the nodes labeled V_1 and V_2 . \pm

 $\frac{V_1 - V_3}{6k} + \frac{V_1}{12k} + \frac{V_2}{6k} + \frac{V_2 - V_3}{12k} = 0$ the constraint for the supernode is $V_1 - V_2 = 2V_x$ The final equation is $V_3 = 6$ Solving these equations we find that $V_1 = \frac{9}{2} V$ hence, $I_o = \frac{V_1}{12k} = \frac{3}{8} \text{ mA}$ See Basic Engineering Circuit Analysis, Irwin

Nodal analysis

Use nodal method to determine the current I_0 .

answer=1.333 mA