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CHAPTER EIGHT 

 
8. PLASTIC ANALYSIS OF STEEL STRUCTURES 

 
8.1.  Introduction: 
 Although the terms Plastic analysis and design normally apply to such procedures for steel 
structures within the yield flow region, at almost constant stress, however the Idea may also be applied to 
reinforced concrete structures which are designed to behave elastically in a ductile fashion at ultimate 
loads near yielding of reinforcement. 
 The true stress-strain curve for a low grade structural steel is shown in fig. 1 while an idealized 
one is shown in fig. 2 which forms the basis of Plastic Analysis and Design. 
 

A

B

C D

E

F

Stress AB-Elastic
BC-Yeild points
CD-Plastic Strain flow
DE-Strainhardening
EF-Failure

Stress

A

(B,C)   Plastic     D

Elastic

Strain Strain 
Fig 1: Fig 2:

f
f

 
8.2.  Advantages of Plastic Analysis 
 1. Relatively simpler procedures are involved. 
 2. Ultimate loads for structures and their components may be determined. 
 3. Sequence and final mode of failure may be known and the capacity at relevant stages may be 

determined. 
8.3.  Assumptions in Plastic bending 
 1. The material is homogeneous and isotropic. 
 2. Member Cross-section is symmetrical about the axis at right angles to the axis of bending. 
 3. Cross-section which were plane before bending remain plane after bending. 
 4. The value of modulus of Elasticity of the material remains the same in tension as well as in 

compression. 
 5. Effects of temperature, fatigue, shear and axial force are neglected. 
 6. Idealized bi-linear stress-strain curve applies. 
8.4.  Number  of Plastic Hinges 
 “ The number of Plastic Hinges required to convert a structure or a member into a mechanism is 
one more than the degree of indeterminacy in terms of redundant moments usually. Thus a determinate 
structure requires only one more plastic hinge to become a mechanism, a stage where it deflects and 
rotates continuously at constant load and acquires final collapse. 
 So Mathematically 
  N =  n+ 1 
 where N =  Total number of Plastic hinges required to convert a structure into a mechanism. 
 and n =  degree of indeterminacy of structure in terms of unknown redundant moments. 
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8.5.  Plastic Hinge. 
 It is that cross-section of a member where bending stresses are equal to yield stresses 
σ= σy= fy. It has finite dimensions. 

 From bending equation σ =  
My
I   or  σy =  

MpC
I   or  σy  =   

Mp
Zp  so Hp =  Zp σy 

 From elastic bending 
σ
y   =   

M
I      or    

σI
y    =   M        where  

I
y   =   Z 

 So M= σZ and Z is elastic section modules and is equal to the first moment of area about N.A 
    Z =  ∫A ydA. 
 
8.6.  Plastic moment of a rectangular  section. 
 Consider a simple rectangular beam subject to increasing bending moment at the centre. Various 
stress-strain stages are encountered as shown below. 
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Var ious Stress-strain distr ibutions 
 Case A - Stresses and strains are within elastic range. 
 Case B - Stresses and strains at yield levels only at extreme fibers 
 Case C - Ingress of yielding within depth of section. 
 Case D - Full plastification of section. 
 On the onset of yielding σ  =   σy     and     M  =   My  =   σy.Z. 
 On full plastification σ  =   σy     and     M  =   Mp  =   σy.Zp. 
 or  Zp  =   ∫A yda  (First moment of area about equal area axis). 
 
 All compact sections as defined in AISC manual will develop full plastification under increasing 
loads realizing Mp. However local buckling of the compression flange before yielding has to be avoided 
by providing adequate lateral support and by applying width / thickness checks as was done during the 
coverage of subject of steel structures design. 
 
Case B. Stresses and Strains at yield at extreme fibres only. 
 Consult corresponding stress and strain blocks. 
 M =  Total compression  ×  la  =   Area  ×  σ  ×  la 
 where Area =   Area in compression (from stress block). 
  σ =   Average compression stress. 
  la =   Lever arm i.e. distance b/w total compressive and tensile forces. 

 So M =   



BD

2   



σy +  o

2    .  
2
3  D 
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 In general 
  M =  Cjd  or Tjd , where C and T are total compressive and tensile forces respectively 
which have to be equal for internal force equilibrium. 
 

 or My =   σy  
BD2

6  , but 
BD2

6  = Z   



Z= Elastic Section modules =  

I
C  =   

BD3

12   ÷  
D
2  

 So My =   σy.Z.       =  
BD2

6  

Case D: Full plastification, σ =  σy upto equal area axis. 

  M =   Cla   =   



B.

D
2    (σy)  

D
2     where la is lever arm 

   =   σy . 
BD2

4   or Zp  =   
BD2

4  , where ZP =  Plastic section Modules. 

or Mp =   σy . Zp or Zp  =   
A
2  [y1 +  y2] (first moment of areas about equal area axis) 

and y1 +  y2 = D/2 (distance from equal area axis to the centroids of two portions of area.) 
 
Case C: Moment Capacity in Elasto - Plastic range. Extreme fibres have yielded and the yielding 
ingresses in the section as shown by the stress – distribution. 
 

1

1
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2
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D
2

y

y
case C : Stress-Distribution

C1

C2

T2

T1

la2 la1

where
la1 = lever axis b/w C1 and T1
la2 = lever axis b/w C2 and T2
C1 = Av.stress  X  area of element No.1
C2 = Av-stress acting on element No.2  x
        area of element 2.

 
 

  M =   [C1la1  +   C2 . la2 ] (A) , la1=  







Z+

D
2 − Z

2 2  =
D
2+ Z 

                 2 

C1 =   (σy)  B  



D

2 − Z     la2 =  



2

3 × Z × 2  =  
4
3 × Z  

C2 =   



σy +  o

2   Z . B  =   σy 
ZB
2     and so, putting values of C1  , C2  la1  and  la2 in equation A above. 
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M =   σy . B 



D

2 − Z    



D

2 +  Z    +   σy 



Z.B

2    x  
4
3  Z , Simplifying 

M  =   σy . B 



D2

4  − Z2   +   
2
3  σy  BZ2  

 =   σy . B  



D2

4   − Z2 +  
2
3  Z2   

Mr =   σy . B 



D2

4  − 
Z2

3   , where Mr is moment of resistance. 

Mp =   Mr  =   σy . B  



3D2 − 4Z2

12   __ For rectangular section. 

 Calculating on similar lines, Plastic moment for various shapes can be calculated. 
 
8.7.  Shape Factor (γ) 
 It is the ratio of full plastic moment Mp to the yield moment My. It depends on the shape of 
Cross-section for a given material. 

 Shape Factor =  γ =  
Mp
My =  

σy . Zp
 σy . Z         or       γ  =   

Zp
Z    (Ratio of Plastic section modulus to 

         Elastic Section Modulus). 
8.8.  Calculation of Shape Factor for  different Sections. 
 

D

B

(1)

(2)

y1

y2

D/2

B

dy
y

 
 
8.8.1 For  rectangular section. 

 I =   
BD3

12   ,  
I
C   =   Z  ,   C =  

D
2  

     So Z =   
BD3 × 2
12 × D    =    

BD2

6   

 Zp =   
A
2   [y1 +  y2]  =   

BD
2   



D

4 +  
D
4   or alternatively, Zp =  ∫A ydA. 

  =   
BD2

4         =   2  
D/2

∫
o

 y . Bdy 

 γ =   
Zp
Z    =   

BD2 × 6
4 × BD2   =   

6
4   =   1.5   =   2B 

D/2

∫
o

 ydy. 

 γ =   1.5     so [Mp is 1.5 times My]   or  Zp  =   
BD2

4   
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8.8.2 For  Circular  Cross-section 

 I =   
πD4

64   , A  =   
π
4 D2   

 Z =   
I
C   =   

πD4

64   ×  
2
D   =   

πD3

32  ,   

 Zp =   
A
2  [y1 +  y2] 

 

D

b

y

dy

(a) Cross-Section (b) Strain
Distribution

(c) Stress at full
plastification Distribution 

  =   
πD2

8  



2D

3π  +  
2D
3π  , r =   

D
2  ,  y1  =   

4r
3π   =   

4 × D
3π × 2   =   

2D
3π   

 Zp =   
D3

6     γ  =   
Zp
Z    =   

D3 × 32
6 × πD3  =   

32
6π   ≅  1.7 

     γ  =   1.7 ,  [Mp is 1.7 times My] 
8.8.3  Hollow Circular  Section 

dD

2D
3 2d

3

d

D  
 

 I =   
π
64  (D4 − d4)  

 
I
C  =   Zmin  =   

π
64 (D4 − d4) .  

2
D  

 Zmin =   
π

32D   (D4 − d4) 

 Zp =   
A
2   [ y1 +  y2] , putting values.                    putting values Ay  =   A1y1 +  A2y2 

  =   
π
8 (D2 − d2) 



2 × 

2
3π 

(D3 − d3)
(D2 − d2)   

π
8  (D2 − d2) y  =   

πD2

8   . 
2D
3π  − 

πd2

8   ×  
2d
3π  

 Zp =   



D3 − d3

6                                                              
π
8  (D2 − d2) y =   



D3

I2 − 
d3

12   
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 γ =   



D3 − d3

6   ×  
32D

(D4 − d4) π   Putting Z and Zp y  =   
8

12π  
(D3 − d3)
(D2 − d2)  

 γ =   
32
6π  

D(D3 − d3)
(D4 − d4)   y  =   

2
3π 

(D3 − d3)
D2 − d2   

   for N-A or equal area axis. 
     For D  =   10”  
            d   =    8”  
 γ =   1.403 
 
For  I  - Section: 
 

D d

B

b/2

T2

T1

C2

C1

    stress
distribution

    strain
distribution

la2
la1

y

 
 

        As =  Z =  
I
C and C =  

D
2 

I =   
(BD3 − bd3)

12   , My  =   σy . Z  =   σy 
(BD3 − bd3)

6D  , Putting value of Z from (1) 

Z =   
I
C   =   

(BD3 − bd3)
12    

2
D    Mp  =   C1 la1 +  C2 la2 

Z =   



BD3 − bd3

6D  (1)     la1=  



d

2 +  



D-d

2
½

 2 = (D+ d)/2, 

la2 =  



D

2 − 



D−d

2
½
 × 2=  

d
2 

Mp=   σy . B  
(D − d)

2   
(D +  d)

2   +  σy . 
d
2  (B − b) 

d
2  

 Mp =   σy 



B

4 (D2 − d2) +  
d2
4  (B − b)   

 

γ =   
Mp
My   =   

σy(BD2 − bd2)
4    ×  

BD
σy(BD3 − bd3)     Mp  =    σy 



BD2 − bd2

4   

γ =   
3D
2    

(BD2 − bd2)
(BD3 − bd3)    if B  =   4”  

       b  =   3.75”  
       D =   8”         , shape factor  γ  =   1.160 
       d  =   7.5”  
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 Similarly for T-section, Equilateral Triangle and hollow rectangular section the values of shape-
factor are 1.794, 2.343 and 1.29 respectively. For diamond shape its value is 2.0. 
 
8.9.  Significance of Shape Factor  
 Zp is First moment of area about equal area axis. 
 1. It gives an indication of reserve capacity of a section from on set of yielding at extreme fibres 

to full plastification. 
 2. If My is known,, Mp may be calculated. 
 3. A section with higher shape factor gives a longer warning before collapse. 
 4. A section with higher shape factor is more ductile and gives greater deflection at collapse. 
 5. Greater is the  γ  value, greater is collapse load factor  λc  
 
8.10.  Collapse load of a structure. 
  Collapse load is found for a structure by investigating various possible collapse mechanisms of 
a structure under conceivable load systems. For any given mechanism, possible plastic hinge locations 
are determined by noting the types of loads and support conditions remembering that under increasing 
loads, the plastic hinges would form in a sequence defined by corresponding elastic moments at the 
possible plastic hinge locations. “ Collapse loads are usually the applied loads multiplied by collapse 
load factor  λc . λc is defined as the ratio of the collapse load to the working load acting on any 
structure / element” . The value of λc may indicate a margin of safety for various collapse mechanisms 
and steps can be taken in advance to strengthen the weaker structural elements before erection. Benefit of 
` strength reserve’  is obtained due to increased moments of resistance due to plastification. The reserve 
of strength is large if the section widens out near the vicinity of neutral surface. 
 
8.11.  Assumptions made in Plastic Theory. 

 The plastic analysis is primarily based on following assumptions. 

 1. For prismatic members,, the value of Mp is independent of magnitude of bending moment. 

 2. The length of plastic hinge is limited to a point. 

 3. Material is very ductile and is capable of undergoing large rotations / curvatures at the 
constant moment without breaking. 

 4. The presence of axial force and shear force does not change the value of Mp. 

 5. The structure remains stable until the formation of last plastic hinge and serviceability would 
not be impaired till such time. 

 6. Loads acting on structure are assumed to increase in proportion to each other. 

 7. Continuity of each joint is assumed. 
 
8.12.  Fundamental Theorems of Plastic Collapse. 
 When degree of redundancy increases beyond 2  or  3 in situations where collapse mechanism is 
not very clear, we try to pick up collapse load with the help of three fundamental theorems. 

 a. Lower bound theorem or static theorem. 

 b. Upper bound theorem or kinematic theorem. 

 c. Uniqueness theorem. 
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8.12.1  Lower  Bound theorem 
 “ A Load computed on the basis of bending moment distribution in which moment nowhere 
exceeds Mp is either equal to or less than the true collapse load” . 
 
8.12.2  Upper bound theorem 
 “ A load computed on the basis of an assumed mechanism is either equal to or greater than true 
collapse load” . When several mechanisms are tried, the true collapse load will the smallest of them. 
 
8.12.3. Uniqueness theorem 
 “ A load computed on the basis of bending moment distribution which satisfies both plastic 
moment and mechanism conditions is true plastic collapse load” . 

 

Mp

Static
Theorems.

Curvature.

Kinematic
Theorems.

Moment

True

 
 

8.13.  Methods of analysis 

 Basically there are two methods of analysis. 

  a. Equilibrium Method. 

  b. Mechanism Method. 

8.13.1.  Equilibr ium Method 

 Normally a free bending moment diagram on simple span due to applied loads is drawn and 
B.M.D due to reactants is superimposed on this with due regard to their signs leaving the net moment 
distributed. Then by making the moment values equal to Mp values at the known potential plastic hinge 
locations, a revised diagram can be drawn. Then by splitting the simple span moment due to applied 
loads in terms of relevant Mp, the values of collapse load can be determined. 

8.13.2.  Mechanism Method 

 In this approach, a mechanism is assumed and plastic hinges are inserted at potential plastic 
hinge locations. At plastic hinges the corresponding rotations and deflections are computed to write work 
equations which may be written as follows. 

 Work done by external loads  =   Actual loads   x  Average displacements =  Work absorbed at 
Plastic hinges (internal work done)  =   Mp. θ 
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  Typically Σ W. δ  =   Σ Mp . θ. 

 In both methods, the last step is usually to check that M <  Mp at all sections. 

8.14.  Values of Collapse loads for  different loaded structures. 

Beam Under  loads Collapse load Pc or  Wc 

P
L/2

 
4 

Mp
L   

PL/2

 
8 

Mp
L   

W

 
16 

Mp
L2   

P
2/3L

 
9 

Mp
L   

PL/2

 
6 

Mp
L   

L P

 
1 

Mp
L   

W

 
11.65 

Mp
L2   

 
8 

Mp
L2   

L
3        P        P/

 
6 

Mp
L   

P
L/3

 
6 

Mp
L   
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8.15.  In order  to explain the above procedure, Let us solve examples. 
Analysis of a Continuous beam by Mechanism Method. 
EXAMPLE NO. 1:-  Consider the beam loaded as shown. Three independent possible collapse 
mechanisms along with potential plastic hinge locations are shown. 
SOLUTION: degree of indeterminacy in terms 
  of moments  =   n  =   2 ( moments at A and B) 
No of Plastic hinges required  =   2 +  1 =  3 

A
4

20K      20   

B

    20   

4

    

C

   

8

   

12

K K

4

 
First possible beam mechanism for span AB. 

4

/2

1.5  
 
Second possible beam mechanism for span AB. 
 

3

2

8

 
 
Possible beam mechanism for span BC 
 

2

Real Hinge

 
 
Write work equations for all mechanisms and find corresponding Mp values. 
 
Mechanism (1) 

  20 × 4 θ +  20 × 2θ =   Mp . θ  +   Mp.1.5θ +  Mp 
θ
2  

   120 θ =   3 Mp θ 
   Mp =   40 K-ft. 
Mechanism (2) 
  20 × 4 θ +  20 × 8 θ  =   Mp . θ +  Mp.3θ +  Mp . 2θ 
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   240 θ   =   6 Mp θ 
   Mp   =   40 K-ft 
Mechanism (3) 
  20 × 4 θ  =   Mp. θ +  Mp . 2 θ +  0 × θ 
  80 θ  =   3 Mp . θ 
  Mp  =   26.67 K-ft. 
Minimum Collapse load or Max. Mp will be the collapse mechanism  
  So Mp =   40 K-ft.( Corresponding to mechanisms 1 and 2) 
8.16. EXAMPLE NO.2:-Find the collapse load for  the following continuous beam loaded as shown. 
SOLUTION: Do elastic analysis by three moment equation to find Mb and Mc. Apply the equation 
twice to spans AB and BC and then BC and CD. (In this case, noting symmetry and concluding that 
Mb =  Mc, only one application would yield results). 
 

85.33                  36                  85.33

    16                    9                    16

8m                   6m                8m

A
B C D

2T/m

(Simple span B.M.D. due to loads)
4m 3m

 
 By using three-moment equation 

 


8

I  Ma +  2Mb 



8

I  +  
6
I  +  Mc 



6

I  =  
− 6 × 85.33 × 4

8   
− 6 × 36 × 3

6    

 Ma =   0  , 34 Mb  =   364 So Mb  =   Mc  =   10.70 T − m ( By symmetry) 

8.17. Maximum bending moment in a member  car rying UDL  

A B

W=wL

C

ML

ML

MR

MR

L/2L/2

R1 R2

Mc Mmax

yo

xo zo

B.M.D

 
Consider a general frame element subjected to Udl over its span alongwith end moments plot BMD. 
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After derivation we find the location of maximum moments Xo, Yo and MC. 

In some books, plastic huge is stated to form in the centre of span. However, the formulae given below 
are very precise and give correct location of plastic huges due to u.d.l. 

Where, ML =  Moment at left of element  

 MR =  Moment at right of element 

 MC =  Moment at centre of element 

 Xo , Zo , yo =  Location of max. moment from left, right and centre respectively as shown on BMD. 

yo =  
MR − ML

WL
  =   

10.70 − o
2 x 8   =   0.6687 m  (1) 

MC =   
WL2

8    +   
(MR − ML)

2    =   
2(8)2

8    +   



10.70

2   

 MC =   21.35  T− m      (2) 

 Mmax =   Mc +  
WL . yo2

2L   =   21.35 +  
2 × 8 (0.6687)2

2 x 8   

 Mmax =   21.79  T − m      

 Xo =   
4MC − 3MR − ML

WL
  =   

4 (21.35) − 3 (10.7) − 0
2 × 8  =  at 3.313 m from A and D. 

 Plastic hinges would form first at a distance  Xo  =   3.313 m  from points A and D and then at 
points  B  and  C. 

Now determine collapse load by mechanism method. 
SOLUTION:  No internal work is absorbed at real hinges. 
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A
B            2T/m    C                  D

8m                      6                  8m

3.13m

3.13 0.707

1.707

3

2

First possible collapse mechanism of span AB.

Second possible collapse mechanism of span AB.

Real Hinge

 
 
For  first Mechanism 
 

 (2 × 8)  
3.313 θ

2    =   Mp × 1.707 θ +  0.707 θ Mp +  0 

   So Mp =   10.98 T − m 
 
For  second Mechanism 

  Mp . θ +  Mp . θ +  Mp . 2 θ  =   (2 × 6) 



30

2   

  Mp  =   4.5 T − m 

 So Mp  =   10.98 T − m      or     Load factor   λ  =   
Mp

10.98  

8.18.  Types of Collapse 
 
 Three types of collapses are possible as described below. 

 1. Complete collapse 

 2. Partial collapse 

 3. Over complete collapse. 
 
8.18.1. Complete Collapse 
 
 If in a structure, there are  R  redundancies and collapse mechanism contains (R +  1) plastic 
hinges, it is called a complete collapse provided the structure is statically determinate at collapse. 
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8.18.2. Par tial Collapse: 
 
 If in a structure, the number of plastic hinges formed at collapse do not render the structure as 
statically determinate it is called a partial collapse. 
 
8.18.3.  Over  Complete Collapse 
 
 If in a structure there are two or more mechanisms which give the same value of collapse load 
(or collapse load factor λc) then this type of collapse is known as overcomplete collapse. 
 
8.19.  Analysis of Frames 

 In portal frames, three types of mechanisms are possible. 

 1. Beam Mechanisms  (due to gravity loads) 

 2. Sway Mechanisms  (due to lateral loads). 

 3. Combined Mechanisms  (both loads). 
 
Step 1: 
 Draw frame in thickness in two lines i.e., solid lines and broken lines. Solid lines are “ outside”  
of frame and broken lines are “ inside”  of frame. 
 
Step 2: Nodal moments creating compression on out sides are positive or vice-versa. 
 

+

+

Outside OutsideInside

 
Step 3: Hinge cancellation at joints occur when rotations of  different signs are considered and 
mechanisms are combined. 
 
EXAMPLE NO. 3:-   Analyse the frame shown below 
SOLUTION: 
 1, 2, 3, 4 and 5 are possible plastic Hinge locations. Three independent mechanisms are possible 

Beam mechanisms, Sway mechanisms and Combined mechanisms are possible. 
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1

5

2 5 5
20

15

4

5

3

 
1.  Beam Mechanism 
 Write work equation ( Fig A ) 
 20 λ.5 θ =   M2 (− θ) +  M3 (2 θ) +  M4 (− θ) 
 100 λ =   − M2 +  2M3 − M4  by taking θ as common above. (1) 
 Remember  that work is always positive. 
 putting M2  =   Mp M3  =   Mp M4  =   Mp in equation (1),  we have 
 100 λ =   4 Mp    or   [λ  =   0.04 Mp] 
 

20

5

2

2

3

4

1 5
(a) Beam mechanism of element 2-4 

 

+

+

5 5
20

152

3

1 5

(b) Sway Mechanism of Columns

4
4
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+

5 5
20

15
-2

2
5

2

3

1 5

(c) = a + b combined mechanism  
 
2.  Sway Mechanism: 
 15 λ.5 θ =   M1(− θ) +  M2 θ +  M4 ( − θ) +  M5 (θ) 
 75 λ =   − M1 +  M2 − M4 +  M5    (2) 
 M1, M2, M4 and M5 are all equal to Mp 
 75 λ =   4 Mp   or   [ λ  =   0.053 Mp] 
 
3.  Combined Mechanism: 
 20 λ . 5 θ +  15 λ . 5 θ =   M1 (−θ) +  M2 (0) +  M3 (2 θ) +  M4 ( − 2 θ) +  M5 (θ) 
  175 λ  =  − M1 +  2M3 − 2 M4 +  M5  (3) 
  all these moments are equal to Mp 
  175 λ  =   6 Mp ,  [ λ  =   0.034 Mp ]    or    Mp  =   29.15 λ. 
 
 Keeping in mind the definition of a true mechanism [one giving highest value of Mp in terms of 
Pc or lowest value of Pc in terms of Mp or λ ] 
Combined mechanism is the true collapse mechanism. 
 
 So λc =   0.0343 Mp 
 
 It will be a complete collapse if the structure is statically determinate and moment anywhere 
does not exceed Mp value since there are n +  1 plastic hinges in the true collapse mechanism 
 Note: “ Moment checks are normally applied at those plastic hinge positions which are 
not included in the true collapse mechanism” . In the true collapse mechanism which is combined 
mechanism in this case, moments at points 1, 3, 4 and 5 are equal to Mp, we need to find and check 
moment value at point 2 only in this case. 
 The generalized work equations 1 and 2 in terms of moments may be used for the purpose 
alongwith their signs. 
 100 λ =  − M2 +  2M3 − M4   (1) 
 75 λ =   − M1 +  M2 − M4 +  M5  (2) Noting that λ  =   0.0343 Mp 
 eqn (1) becomes 
 100 × 0.0343 Mp =   − M2 +  2Mp +  Mp     so   M2 =  − 0.431 Mp <  Mp − O.K. 
 eqn (2) becomes 
 75 (0.0343 Mp) =   +  Mp +  M2 +  Mp +  Mp    so    M2  =   − 0.42755 Mp <  Mp − O.K. 
 Net value of M2  =   algebraic sum of equations 1  and  2 as combined mechanism is 
combination of case A and case B. 
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 M2  =   ( − 0.431 − 0.427 )  Mp  =   − 0.858 Mp <  Mp − O.K. 
 If at this stage a higher load factor is specified by the designer, there is no need to revise the 
frame analysis and following formula can be applied to get increased Mp value. 
 

 (Mp) new =    
specified new collapse load factor

present calculated collapse load factor   x  (Mp Present) 

8.20. EXAMPLE NO. 4:-   Par tial or  incomplete collapse: 
 Find collapse load factor for the following loaded frame. Mp is 80 KN-M for all members. 
 

Mp=80KN-m

7.5m 7.5m
37.5

3 4
12.5

5m

2

1 5  
 
SOLUTION:  Draw three possible independent collapse mechanisms. Write work equation and find 1, 2, 
3, 4 and 5 possible plastic hinge locations. 
 
1.  Beam Mechanism: 
  (35.5 λ) 7.5 θ =   − M2 θ +  M3 2 θ +  M4 (−θ) 
  281.25 λ  =   − M2 +  2M3 − M4   (1) 
 moment at 2, 3 and 4 is equal to Mp.  so 
  281.25 λ =   4 Mp   (work is always  + ve) 
 or λ  =   1.1377 
2.  Sway Mechanism: 
  (12.5 λ) 5 θ =   +  M1 (− θ) +  M2 (θ) +  M4 (−θ) +  M5 (θ) 
  62.5 λ  =   − M1 +  M2 − M4 +  M5 (2), Moment at 1,2,4 and 5 is Mp. 

  62.5 λ   =   4 Mp   or   λ  =   
4

62.5   ×  80  =   5.12 

  λ  =   5.12 
 

37.5
7.5

2
2

3

4

(a) Beam mechanism 

+

5 5
37.5

12.5

-2

2

7.5
2

3

1 5

(c) Combined mechanism

4

(b) Sway Mechanism  
 
3.  Combined Mechanism: 
  (37.5 λ) (7.5θ)+ (12.5 λ) (5θ)= M1 (−θ) +  M2 × 0 +  M3 (2θ) +  M4 (−2θ) +  M5 (θ) 
  343.75 λ =   − M1 +  2M3 − 2M4 +  M5 (3) Moment at 1,3,4 and 5 is Mp 
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  343.75 λ =   6 Mp    or    λ  =   
6 x 80
343.75   =   1.396 

  λ  =   1.396. 
 Therefore, according to kinematic theorem, beam mechanism containing 3  Plastic hinges (one 
less than required) is the collapse mechanism for this frame with 3 redundancies. (N= n+ 1)= 3+ 1= 4 
are required.; 
 Note:  In partial or incomplete collapse, only a part of the structure becomes statically 
determinate. 
 Check moments at locations  (1)  and (5) with λ  =   1.1377 , M2 , M3 , M4  =   Mp 
substituting is eqn  (2). 
  62.5 λ =  −M1 +  M2 − M4 +  M5   or   62.5 (1.1377)  =   − M1 +  Mp +  Mp +  M5 
  − 88.937 =   M5 − M1   (4)     or     M1 − M5   =    88.937   (4) 
 Putting same values in eqn  (3) 
  343.75 (1.137) =   − M1 +  2Mp +  2Mp +  M5 
    =   − M1 +  M5 +  4 × 80 
   70.84 =   M5 − M1    (5) 
 Values of M1 and M5 cannot be found from either of equations  (4) and (5) as this is incomplete 
or partial collapse. Instead of a unique answer on values of M1 and M5 which do not violate yield 
criteria, different pairs of possible values of M1 and M5 can be obtained satisfying equations 4 and 5. 
Therefore, according to Uniqueness theorem beam mechanism is the true collapse mechanism. It is a 
partial collapse case. 
 
8.21. EXAMPLE NO. 5:-  Overcomplete collapse 
 Determine λc for the following loaded frame. 
 

3m 3m
36

3 4
24

6m

2

1 5

Mp42 42

63

 
SOLUTION:   Sketch possible independent collapse mechanisms. Notice that locations where beam and 

column meets, plastic huge is formed in weaker member near the joint. 

 
 



368  THEORY OF INDETERMINATE STRUCTURES 
 

 

36
3

2

2

3

4

(a) Beam mechanism 
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(c) Combined mechanism
(a + b)

(d) Another Combined mechanism
                         (b+c)
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(b) Sway mechanism 

 

 
1.  Beam Mechanism: Fig A 
 
 (36λ) 3φ =   − M2 φ +  M3 (2φ) − M4 φ 
 108 λ =   − M2 +  2M3 − M4 (1) All are equal to respective Mp. Putting values. 
 108 λ =   42 +  2 x 63 +  42 
        λ =   1.944 
 
2.  Sway Mechanism Fig B. 
 
 (24λ) 6θ =   M1 (−θ) +  M2 (θ) +  M4 (−θ) +  M5(θ) 
 144 λ =   − M1 +  M2 − M4 +  M5   (2) 
 144 λ =   42 +  42 +  42 +  42       or   λ  =   1.166 
 
3.  First Combined Mechanism Fig C 
 
 (24 λ) (6φ) +  (36λ) (3φ) =   M1 (−φ) +  M2 (0) +  M3 (2φ) +  M4 (−2φ) +  M5 (φ) 
 252 λ =   − M1 +  2M3 − 2M4 +  M5   (3) 

        λ =   
294
252   λ  =   1.166 

 
4.  Second Combined Mechanism Fig D 
 
 (36 λ)3φ+ 24λ (θ+ φ)6= M1 (−θ −φ)+ M2 (θ)+ M3 (2φ) +  M4 (θ +  2φ) +  M5 (θ +  φ) φ ≅ θ 
 396 λ =   − M1 +  M2 +  2M3 − 2M4 +  2M5 
 396 λ =   2(42) +  42 +  2(63) +  3 x 42 +  2 x 42 
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        λ =   
462
396   =   1.166 

        λ =   1.166. 
 
 Note:  In overcomplete collapse, more than one mechanism give the same value of collapse load 
factor. Any or both of the collapse mechanisms can contain extra number of plastic hinges than those 
required for complete collapse. So in this case fig  c  and  d  mechanisms give the same value. This was 
the case of over complete collapse. 
 
Space for  notes: 
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