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CHAPTER NINE 

 
9. THE THREE MOMENT EQUATION 

 
 Most of the time we are concerned with the classical analysis of statically determinate structures. 
In this chapter we shall consider the analysis of statically indeterminate (externally) beams due to applied 
loads and due to settlement of supports. It must be remembered that supports for beams may be walls or 
columns. As we know that for the analysis of statically indeterminate systems, compatibility of 
deformations is also essential requirements in addition to considerations of equilibrium and statics. By 
compatibility it is understood that deformations produced by applied loads should be equal to those 
produced by redundants. It has been already mentioned that reactions occur at supports in various 
directions if 

 (i) There is some action (applied load) in that direction. 

 (ii) There is restraint offered by support in that directions 

 Action and reactions are equal in magnitude but opposite in direction. In the structural analysis it 
is sometimes customery to think that rotations are generally associated with moments and deflections or 
translations are associated with loads. It must also be kept in mind that we never analyze actual structural 
systems or sub-systems, it is only the idealized ones which are analyzed. Representing beams and 
columns by just a straight line located on their centroidal axis is also a sort of idealization on the 
structural geometry. Reactions and loads are, therefore, also idealized and are shown by a sort of line 
loads acting on a point. 

 The three-moment equation is a good classical analysis tool in which support moments produced 
by the loads as well as by the differential settlements can be easily calculated by using second-moment 
area theorem which states that 

 “ The deviation of a point A on the elastic curve w.r.t any other point B on the elastic curve is 

equal to 
1
EI multiplied by the moment of area of B.M.D’ s between those two points.”  The moments of 

B.M.D’ s are taken about a line passing through the point of loaded beam where deviation is being 
measured. 

 The method is essentially based on continuity (equality) of slopes on the either side of a support 
by reducing an indeterminate system to its determinate equivalents as follows by using supperposition. 

 

= +
 

 An indeterminate beam under applied loads and redundant moments is equated to corresponding 
detemrinate system carrying these two effects separately. Let-us derive the three-moment equation. 

 Consider a generalized two-span beam element under the action of applied loads and redundant 
support moments acting on BDS. 
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 Fig(a) is an indeterminate beam subjected to applied load (udl in this case) which has shown 
settlement such that support B is at a lower elevation than support at A and C and difference of elevation 
w.r.t intermediate support B is ha and hc. The angle θB on either side of support B must be equal. Fig(b) 
is B.M.D. due to applied load on simple spans where A1 is Area of B.M.D. on span L1 and A2 is area of 
B.M.D. on span L2. a1 and a2 are the locations of centroids of B.M.D’ s on L1 and L2 from left and right 
supports respectively. So invoking continuity of slopes and knowing that for small angels θ =  tanθ. 
 

  
AA1

L1
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CC1
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Evaluate AA1 by second Moment Area Method. We know that  
 
  AA1 =   AA/ − A1A/  
 
   =   ha − deviation of point A/ on the elastic curve from the tangent drawn at 
        point B on the elastic curve. 
 

   =   ha − 
1

EI1
 



A1a1 +  A3 × 

L1

3  +  A4 × 
2
3 L1  

 
        expressing A3 and A4 in terms of moments 
 

  AA1 =   ha − 
1

EI1
 



A1a1+  

L1

3  × 
1
2 MaL1 +  

2
3 L1 × 

1
2 MbL1  

 

   =   ha − 
1

EI1
 



A1a1 +  

MaL12

6  +  
MbL12

3  divide by L1  

   

  
AA1

L1
 =   

ha

L1
 − 

1
EI1

 



A1a1

L1
 +  

MaL1

6  +  
MbL1

3   (1) 

 

  Now evaluate 
CC1

L2
 on similar lines. We have from geometry  

 
  CC1 =   C1C/ − CC/  

   =   (deviation of point C/ from tangent at B)  − hc  
 

   =   
1

EI2
 



A2a2 +  A5 × 

2
3 L2 +  A6 × 

L2

3  − hc  

 
  expressing A5 and A6 in terms of Moments 
 

  CC1 =   
1

EI2
 



A2a2 +  

2
3 L2 × 

1
2 MbL2 +  

L2

3  × 
1
2 MCL2   − hc  

 

   =   
1

EI2
 



A2a2 +  Mb 

L22

3  +  MC 
L22

6  − hc   divide by L2  

 

  
CC1

L2
 =   

1
EI2

 



A2a2

L2
 +  

Mb L2

3  +  
MC L2

6  − 
hc

L2
 (2) 

 
  Equating  (1)  and (2), we have 
 

  
ha

L1
 − 

1
EI1

  



A1a1

L1
 +  

Ma L1

6  +  
Mb L1

3   =   
1

EI2
 



A2a2

L2
 +  

Mb L2

3  +  
Mc L2

6   − 
hc

L2
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  Multiply by 6E and simplify, we have after re-arrangement 
 

  Ma 



L1

I1
 +  2Mb 



L1

I1
 +  

L2

I2
 +  Mc 



L2

I2
 =  − 

6 A1a1

I1L1
 − 

6 A2a2

I2L2
 +  

6 Eha

L1
 +  

6 Ehc

L2
 

  The above equation is called three-moment equation. 
 
9.1.  Analysis of Continuous Beams by three-Moment Equation. 
 We apply three moment equation to two spans at a time which gives us one equation. With the 
successive applications, the required member of equations are obtained and are solved simultaneously. 
 
EXAMPLE: Analyze the continuous beam shown below by three-Moment equation. 
  Take E =  20 × 106 KN/m2 and Ic =  40 × 10-6 m4. 
 

12 KN
A B C D9.6 KN/m

32 KN

3m

Lo
Do

Io = 

Lo
6m8m6m2m

2Ic 4Ic 2Ic

Fig (a)

Fig (b)
A3A2

3m4m
409.6 144

A  = 01

9.6 x 82

8
= 76.8

32 x 6
4

= 48

BMD

 
 
SOLUTION: 
 When a fixed support at either end is encountered, an imaginary hinged span of length Lo and 
Interia Io =  ∞ is added to conform to acted support conditons and to make the method applicable in 
similar situations. 
 
 The same has already been done in Fig(a). Fig (b) is the BMD’ s on simple spans, their Areas 
and its locations. 
 Apply three-moment equation to spans AB and BC at a time. We have  
 

 Ma 



6

2Ic  +  2Mb 



6

2Ic +  
8

4Ic  +  Mc 



8

4Ic  =  − 6 × 0 − 
6 × 409.6 × 4

4Ic × 8  

 
 Simplify and multiplying by Ic both sides of equation, we get. 
 3Ma +  10 Mb +  2 Mc =  − 307.2  put Ma =  − 24 KN-m 
  10 Mb +  2 Mc =  − 235.2  divide by 10 
    Mb +  0.2 Mc =  − 23.52   (1) 
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 Now apply three-moment equation to spans BC and CD 

 Mb 



8

4Ic  +  2 Mc 



8

4Ic +  
6

3Ic  +  MD 



6

3Ic  =  − 
6 × 409.6 × 4

4Ic × 8  − 
6 × 144 × 3

3Ic × 6  

 Simplify and multiply by Ic, we have, 
 2 Mb +  8 Mc +  2 MD =  − 307.2−144 =  − 451.3  divide by 2 
      Mb +  4 Mc +  MD =  − 225.625   (2) 
 Now apply three-moment equation to spans CD and DDO  

 Mc 



6

3Ic  +  2 MD 



6

3Ic +  
Lo
∞  +  Mdo 



Lo

∞  =  − 
6 × 144 × 3

3Ic × 6  

 Simplify and multiply by Ic  both sides of equation. 
 2 Mc +  4 MD =  − 144     divide by 2 
    Mc +  2 MD =  − 72     (3) 
 
We have obtained three equations from which  three-Unknowns Mb, Mc and MD can be calculated. 
 Subtract equation (2) from (1) 
 
 Mb +  0.2 Mc  =  − 23.52 
            Mb +     4 Mc +  MD =  − 225.625  
         − 3.8 Mc          − MD =  202.105    (4) 
 Multiply equation (4) by (2) and add in equation (3) 
 − 7.6 Mc − 2MD   =   404.21 
         Mc +  2 MD =   − 72 
 − 6.6 MC    =  332.21 
 
     So Mc =  − 50.3 KN-m 
 
 put Mc in equation (1), we get Mb =  − 13.46 KN-m 
 
 put Mc in (3), we get MD =  − 10.85 KN-m. 

Finally 
 Mb =  − 13.46 KN-m 
 Mc =  − 50.3 KN-m 
 MD =  − 10.85 KN-m 
 
Checks: 
 The above calculated values of moments are correct if they satisfy the continuity of slope 
requirements. Slopes at any intermediate support point can be calculated from the two adjacent spans by 
using conjugate beam method. While applying checks, it is assumed that reader is well conversant with 
the conjugate beam method. Before we could apply checks, it is necessary to plot reactant moment 
diagram (support-moments) to get their contribution in slope calculation. Here is the statement of 
conjugate beam theorem number one again. 

 “ The shear force at any point on the conjugate beam loaded with 
M
EI diagram is the slope at the 

corresponding point in the actual beam carrying applied loads.”  In applying the conjugate -beam method, 
we must use the original sign convention for shear force as applied in strength of Materials subject. (i.e., 
“ left up, right-down, positive) 
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 Fig(c) is the reactant moment diagram 
 The areas of positive BMD’ s act as loads in downward direction to which reactions are 
upwards. The areas of negative BMD’ s act as loads in upward direction to which support reactions are 
downwards. The direction of reaction is accounted for in the signs appropriately. 

 A4 =  13.45 × 6 =  80.7   A7 =  
8(50.3 − 13.45)

2   =   146.2 

 A5 =  
6(24 − 13.45)

2  =  31.65  A8 =  10.85 × 6 =  65.1 

 A6 =  13.45 × 8 =  107.6   A9 =  
6(50.3 − 10.85)

2  =  118.35 

 
Checks. SPAN AB 

S.F at A =  θa =   
1
EI 



−

A4
2  − 

2
3 A5   =   

1
2EIc 



− 80.7

2  − 
2
3 × 31.65  

 

     θa =   − 
30.725

EIc  (There is no check on this value as, it is not a continuous support) 

 

     θb =   
1

2EIc 



A4

2  +  
1
3 A5   =   

1
2EIc 



80.7

4  +  
31.65

3  

 

  =   
25.45
EIc   Clockwise. 

 
 SPAN  BC 

     θb =   
1

4EIc  



A2

2  − 
A6
2  − 

1
3 A7   =   

1
4EIc 



409.6

2  − 
107.3

2  − 
1
3 × 147.5  

 

     θb =   
25.46
EIc   Clockwise 
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     θc =   
1

4EIc  



− A2

2  +  
A6
2  +  

2
3 A7   =   

1
4EIc  



− 409.6

2  +  
107.3

2  +  
2
3 × 147.5  

 

     θc =   
− 13.18

EIc  

 
 SPAN CD 
 

     θc =   
1

3EIc  



A3

2  − 
A8
2  − 

2
3 A9   =   

1
3EIc 



144

2  − 
65.1

2  − 
2
3 × 118.33  

 

     θc =   − 
13.16
EIc  

 

     θD =   
1

3EIc  



− 

A3
2  +  

A8
2  +  

1
3 A9   =   

1
3EIc  



− 

144
2  +  

65.1
2  +  

118.33
3  

 
     θD =   0 (Fixed end) 
 
 All slope values have been satisfied. This means calculated support moment values are correct. 
Now beam is statically determinate we can construct SFD and BMD very easily. We have seen that 
numerical values of E and I are required in this case only if one is interested in absolute values of θ. 
However, these values are required while attempting a support settlement case. Determine reactions and 
plot SFD and BMD. 
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EXAMPLE-2: Analyze the continuous beam shown below by three moment equation if support at B 

sinks by 12 mm. Take E =  20 × 106 KN/m2; Ic =  40 × 10-6 m4. 
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SOLUTION: 
 As the extreme right support is fixed, an imaginary Hinged span of length Lo and Ic =  ∞ has 
already been added to make the method applicable and to conform to the support characteristic at D. 
Now it is a sort of continuous support. Only analysis due to differential settlement at B is required. Had 
there been some applied loads also, those could have been considered at the same time also. 
 Now EI =  20 × 106 × 40 × 10−6 =  800 KN-m2. 
 we also know that Ma =  0 and MDO =  0 being extreme hinge supports. 
 
 Spans AB and BC 
 
 When we consider these spans and compare them with the derivation, we find that situation is 

similar so both ha and hc terms are positive and equal to 12 mm using three-moment equation. 
 

 Ma 



6

2Ic  +  2Mb 



6

2Ic +  
8

4Ic  +  Mc 



8

4Ic  =  
6E × 12 × 10-3

6  +  
6E × 12 × 10−3

8  

 
 put Ma =  0, simplify and multiply by Ic 
 
 2Mb (3+ 2) +  Mc (2) =  EIC × 12 × 10-3 +  0.75 EIC × 12 × 10-3  
 
 put EI =  800 
 
 10 Mb +  2 Mc =  9.6 +  7.2 =  16.8    divide by 10 
   Mb +  0.2 Mc =  1.68     (1) 
 
 Spans  BC  and  CD 
 
 Comparing these two spans with the derivation, we notice that ha term is equal to − 12mm and 
hc term is zero. 
 

 Ma 



8

4Ic   +   2Mc 



8

4Ic +  
6

3Ic  +  Md 



6

3Ic  =  
6E(− 12 × 10-3)

8  +  0 

 
 Simplify and multiply by Ic 
 
 2 Mb +  8 Mc +  2 Md =  − 7.2   divide by 2 

       Mb +  4 Mc +  Md =  − 3.6   (2) 
 
 Spans CD and DDO  
 
 There is no load and settlement on these two spans so right handside of equation is zero 
 

 Mc 



6

3Ic  +  2Md 



6

3Ic +  
Lo
∞  +  Mdo 



Lo

∞  =  0 
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 We know that Mdo =  0;  
Lo
∞  =  0 

 
 Simplify and multiply by Ic 
 
 2 Mc +  4 Md =  0    divide by 2 

    Mc +  2 Md =  0    (3) 
 
 Above three linear simultaneous equations which are solved. Subtract (2) from (1) 
 
 Mb +  0.2 Mc  =      1.68 
            Mb +     4 Mc +  Md =   − 3.6  
          − 3.8 Mc − Md  =  5.26   (4) 
 
 Now multiply equation (4) by 2 and add to equation (3) 
 
 − 7.6 Mc − 2 Md  =   10.56 
         Mc +  2 Md =   0   
 − 6.6 Mc  =  10.56 
 
 Mc =  − 1.6 KN-m 
 

 Md =  − 
Mc
2   =   +  0.8 

 
 Mb =  2 KN-m 
 
 Plot end moment diagram. Add and subtract equal areas on spans BC and CD and apply 
conjugate beam method. 
 

 A1 =   
1
2 × 6 × 2 =  6 

 A2 =   
1
2 × 8 × 2 =  8 

 A3 =   
1
2 × 6 × 0.8 =  2.4 

 A4 =   
1
2 × 8 × 1.6 =  6.4 

 A5 =   
1
2 × 6 × 1.6 =  4.8 

 Compute slopes at supports. 
 
 θa =   Slope due to settlement (configuration) +  due to end moments 

  =    
12 × 10−3

6  +  
1

2EIc 



A1

3   =   
12 × 10−3

6  +  
1

1600 


6

3  =  3.25 × 10−3 rad. 

 Span AB 
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 θb =   
12 × 10−3

6  +  
1

2EIc 



−

2
3 A1  =  

12 × 10−6

6  +  
1

1600 



−

2
3 × 6  

 
  =   -5 × 10−4 rad. 
 
 Span BC 

 θb =   
12 × 10−3

8  +  
1

4EIc 



2

3 A2 − 
1
3 A4   =  

12 × 10−3

8  +  
1

4 × 800 



2

3 × 8 − 
1
3 × 6.4  

 
 θb =   − 5 × 10−4 rad. 
 

 θc =   
12 × 10−3

8  +  
1

4EIc 



−

1
3 A2 +  

2
3 A4  

 
 θc =  − 1 × 10−3 rad. 
 
 Span CD 

 θc =   0 +  
1

3EIc 



1

3 A3 − 
2
3 A5  =  

1
3 × 800 



1

3 × 2.4 − 
2
3 × 4.8  

 
 θc =   −1 × 10−3 rad. 

 

 θd =   0 +  
1

3EIc 



−

2
3 A3 +  

1
3 A5  =  0 +  

1
3 × 800 



−

2
3 × 2.4 +  

1
3 × 4.8  

 
 θd =   0 (Fixed end) 
 Checks on slopes have been satisfied so computed moment values are correct. Now beam is 
determinate. SFD and BMD can be plotted. 
 
Resolve same problem, for a differential sinking of 12 mm at support C. we get the following equations. 
 
 Mb +  0.2 Mc  =   − 0.72  (1) 
 Mb +  4 Mc +  Md =   8.4   (2) 
 Mc +  2 Md  =  − 4.8   (3) 
 
 Solution gives 
 Mc  =   +  3.49 
 Md  =   − 4.145 
 Mb  =   − 1.418 
 
 apply continuity checks and plot SFD and BMD. 
 
Unsolved Examples: 
 Solve the following loaded beams by three-moment equations. 
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70 KN
3m

A B C

8m 12m

EI = Constt.  
 
Final equations: 
 Ma +  0.5 Mb  =  − 90.312  (1) 
 Ma +  5 Mb +  1.5 Mc =  − 213.12  (2) 
 Mb +  2 Mc  =  0   (3) 
 
End Moment Values: 
 Mc =  16.41 
 Mb =  − 32.82 
 Ma =  − 73.91 

24 KN/m

A

B C D

6m 72 KN

4m

Lo

1.5 m

6m12m6m
3Ic 10Ic 2Ic

E

60 KN

16 KN/m
24 KN

 
 
Final Equations: 
 2 Ma +  Mb   =  − 216  (1) 
 2 Ma +  6.4 Mb +  1.2 Mc =  − 1555.2 (2) 
 1.2 Mb +  8.4 Mc  =  − 1495.2 (3) 
End moment values: 
 Ma =  − 0.361 KN-m 
 Mb =  − 215.28 Kn-m 
 Mc =  − 147.25 Kn-m 
 

A B C D

6m12m6m

3Ic 10Ic 2Ic

15 mm E = 200 x 10  KN/m6 2

Ic = 400 x 10  m-6 4

 
 
Final Equations: 
 2 Ma +  Mb    =  − 600  (1) 
 2 Ma +  6.4 Mb +  1.2 Mc =  1800  (2) 
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 1.2 Mb +  8.4 Mc  =  − 600  (3) 
 
End moment values: 
 Ma =  − 537.69 KN-m 
 Mb =  475.38 
 Mc =  − 139.34 KN-m 
 

A

3 KN/m 20 KN

3m8m5m
2I I 2I

15 KN

8m
I

B C

 
 
End moment values: 
 Ma =  − 75 KN-m 
 Mb =  21.75 
 Mc =  − 60 KN-m 
 

A

9.6 KN/m 32 KN

6m8m
2I 4Ic 3Ic

12 KN

6m

B C 3m D2m

 
Final equations: 
 10 Mb +  2 Mc  =  − 235.2 (1) 
 2 Mb +  8 Mc  =  − 451.2 (2) 
 
End moment values: 
 Ma =  − 24 KN-m 
 Mb =  − 12.88 
 Mc =  − 53.18 
 Md =  0 
 

A

9.6 KN/m 32 KN

6m8m
2I 4Ic 3Ic

12 KN

6m

B C 3m D2m
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Final equations: 
 10 Mb +  2 Mc  =  − 235.2 (1) 
 2 Mb +  8 Mc +  2 MD =  − 451.2 (2) 
 2 Mc +  4 MD  =  − 144  (3) 
 
End moment values: 
 Ma =  − 24 KN-m 
 Mb =  − 13.455 
 Mc =  − 50.33 
 Md =  − 10.835 
 

A

6m8m
2Ic 4Ic 3Ic

6m

B C 3m D

2m

4.5 mm

 
 
Final equations: 
 10 Mb +  2 Mc  =  6.3  (1) 
 2 Mb +  8 Mc +  2 Md =  − 2.7  (2) 
 2 Mc +  2 MD  =  0  (3) 
 
End moment values: 
 Ma =  0 
 Mb =  0.7714 
 Mc =  − 0.707 
 Md =  0.707 
 

A B C3m3

64 KN

9m

EI = Constt. 
 
Final equations: 
 2 Ma +  Mb   =  − 144  (1) 
 2 Ma +  10 Mb +  3 Mc =  − 288  (2) 
 Mb +  2 Mc  =  0  (3) 
 
End moment values: 
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 Mb =  -19.2 
 Mc =  9.6 
 Ma =  − 62.4 
 

A

6m8m
2Ic 4Ic 3Ic

6m

B C 3m D

4.5 mm
3 mm

Ic = 400 x 10  m-6 4

E = 200 x 10  KN/m6 2

 
 
Final equations: 
 Mb +  0.2 Mc  =  5.4  (1) 
 Mb +  4 Mc +  MD =  − 1.5  (2) 
 Mc +  2 MD  =  − 12  (3) 
 
End moment values: 
 Ma =  0 
 Mb =  5.45 
 Mc =  − 0.27 
 MD =  − 5.86 
 


