
Efficient Methods for Calculating Equivalent Resistance Between

Nodes of a Highly Symmetric Resistor Network

A Major Qualifying Project

Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

By

Jeremy T. Moody

Date: March 29, 2013

Advisors:
Prof. Padmanabhan K. Aravind Prof. Brigitte Servatius
Department of Physics Department of Mathematical Sciences

This report represents the work of one or more WPI undergraduate students submitted to the faculty as evidence of

completion of a degree requirement. WPI routinely publishes these reports on its website without editorial or peer review. For

more information about the projects program at WPI, visit http://www.wpi.edu/Academics/Projects.

Abstract

Classic Kirchhoff methods for solving resistor network problems rapidly become un-

wieldy as the network size grows. For all but trivial networks, the number of equations

to be solved makes the task tedious and error-prone. We present an algorithm for gen-

erating and solving the Kirchhoff equations for an arbitrary N-node network, given an

NxN matrix representation of the network. Using the algorithm and van Steenwijk’s

symmetry method, we replicated his solutions for the effective resistance between nodes

of Platonic polyhedral networks. We derived new solutions for Archimedean and Cata-

lan polyhedral networks, 4D polytopes, and N-dimensional hypercubes. Finally, we

constructed physical models of several networks and measured the resistance between

nodes, validating our calculated results.

Jeremy T. Moody i Resistor Networks

Acknowledgments

Padmanabhan K. Aravind

Brigitte Servatius

For their advice and assistance throughout the project.

Stephen J. Bitar

For his help designing the printed circuit boards used to test our models.

Jeremy T. Moody ii Resistor Networks

Contents

Abstract i

Acknowledgments ii

Contents iii

List of Tables v

List of Figures vi

Executive Summary vii

1 Introduction 1

2 Automatically Generating Kirchhoff Equations From an Arbitrary Net-

work 4

3 Symmetry Method 6

3.1 Introduction . 6

3.2 Notation . 6

4 Semi-Regular Polyhedra 9

4.1 Introduction . 9

4.2 Rhombic Dodecahedron . 9

5 The 120 Cell 14

6 N-Dimensional Hypercube 18

7 Physical Models 19

Jeremy T. Moody iii Resistor Networks

8 Conclusions and Further Study 22

References 24

Appendices 25

A Code For Generating Kirchhoff Equations 25

B Sample Input and Output 29

C Resistance of Selected Networks 32

C.1 Regular Convex Polychora . 32

C.2 Archimedean Solids . 33

C.3 Catalan Solids . 33

Jeremy T. Moody iv Resistor Networks

List of Tables

5.1 Resistance of the 120-Cell . 17

6.1 Resistance of the N -dimensional hypercube 18

7.1 Resistance of the 4-simplex . 20

7.2 Resistance of the 16-cell . 20

7.3 Resistance of the 4-cube . 20

7.4 Resistance of the rhombic dodecahedron . 20

C.1 5-cell (simplex) . 32

C.2 8-cell (4-cube) . 32

C.3 16-cell . 32

C.4 24-cell . 32

C.5 600-cell . 32

C.6 Cuboctahedron . 33

C.7 Icosidodecahedron . 33

C.8 Rhombic dodecahedron . 33

C.9 Rhombic triacontahedron . 34

Jeremy T. Moody v Resistor Networks

List of Figures

1.1 The effective impedance of a ladder, from [1] 1

1.2 The effective impedance of an infinite ladder, from [1] 2

3.1 Example Network . 6

4.1 Layer diagram of the rhombic dodecahedron starting from a node of degree four 10

4.2 Layer diagram of the rhombic dodecahedron starting from a node of degree

three . 11

5.1 120-cell . 14

7.1 Printed circuit board diagram . 19

Jeremy T. Moody vi Resistor Networks

Executive Summary

A resistor network is a collection of nodes connected by resistors. This project addresses

efficient methods for calculating the equivalent resistance between nodes of highly symmetric

networks. This problem has been investigated previously by van Steenwijk (1998), who

studied networks of resistors that form the edges of the Platonic solids, and by Tretiak

and Huang (1965), who derived the resistance between opposite nodes of an n-dimensional

hypercube network. This project presents new results for several finite networks that have

not been considered earlier.

We start by discussing a basic method for calculating effective resistances in resistor

networks, based on circuit laws developed by Gustav Kirchhoff in 1845, and we show how to

use computer algorithms to do these calculations automatically, given the Kirchhoff equations

of the network. For all but trivial networks, the number of equations to be solved makes the

task tedious and error-prone. For this reason, we designed and implemented an algorithm

(presented in the appendix) for generating the Kirchhoff equations for an arbitrary network

of N nodes, given a simple NxN matrix representation of the network.

We then discuss the “Symmetry Method” introduced by van Steenwijk for simplifying

Platonic polyhedral networks. From there, we demonstrate the use of the symmetry method

with networks of semi-regular polyhedra, starting with Archimedean polyhedral networks,

consisting of sets of identical nodes, for which solutions have not previously been published.

We present a novel extension of the symmetry method to the solution of Catalan polyhe-

dral networks, which have two or three different types of nodes, by superposition of partial

solutions. We further show the usefulness of the symmetry method in simplifying problems

by solving networks of four-dimensional polytopes, including the impressively complicated

120-cell. Finally, we derive a general solution for the n-dimensional hypercube using the

symmetry method.

We confirmed our computed results with physical models of several of these networks,

including the rhombic dodecahedron, the 4-simplex, and the 4-dimensional hypercube (tes-

Jeremy T. Moody vii Resistor Networks

saract). Using custom printed circuit boards and 0.1% precision resistors, we constructed

equivalent networks and measured the resistance between nodes, obtaining values within

0.1% of our computed values.

Jeremy T. Moody viii Resistor Networks

1 Introduction

“Now we may ask an amusing question: What would happen if in the network

of Figure [1.1] we kept on adding sections forever—as we indicate by the dashed

lines in Figure [1.2]? Can we solve such an infinite network? Well, that’s not so

hard. First we notice that such an infinite network is unchanged if we add one

more section to the ‘front’ end. Surely, if we add one more section to an infinite

network it is still the same infinite network.”

– R.P. Feynman [1]

Figure 1.1: The effective impedance of a ladder, from [1]

Jeremy T. Moody 1 Resistor Networks

Figure 1.2: The effective impedance of an infinite ladder, from [1]

Richard Feynman was one of many physicists, mathematicians, and engineers who have

studied networks of resistors. The infinite resistor ladder problem was already a well-known

curiosity when he included it in his famed freshman physics lectures at Caltech in 1963. His

solution:

z0 =
z1
2

+

√
(
z12

4
) + z1z2 (1.1)

hints at both unexpected mathematical beauty (if z1 = z2 = 1, then z0 = (1 +
√

5)/2 = φ,

the golden ratio) and a surprising practical application (if 2z1 = z2, then z0 = z2, so such

a ladder can be tapped at each “rung” to obtain a voltage divider that can be used as the

basis for binary digital-to-analog or analog-to-digital conversion).

Feynman’s method for solving the infinite resistor ladder is related to a method used in

this project for solving more complex but finite resistor networks: both gain high efficiency

by exploiting repetitive structures in networks to reduce the size of the problems to be solved.

In recent years, much of the research involving resistor networks has made use of Monte

Carlo methods. If we consider the path taken by an electron through a network as a random

walk in which the probability of exiting a node via a given edge is proportional to the potential

difference between the edge’s endpoints divided by the resistance along that edge (Ohm’s

law), it is apparent that any resistor network can be solved approximately by simulating

the paths of many electrons and observing their flow. This approach has been applied

to problems in materials science, traffic (and other network) congestion, percolation, and

vascular flow, in which current flow through random resistor networks is a useful model.

Jeremy T. Moody 2 Resistor Networks

Accounts of some of these developments can be found in [2] and [3].

This project, however, addresses exact methods for solving symmetric networks. The

resistance between arbitrary nodes of a resistor network having the connectivity of one of

the Platonic solids has been analyzed by van Steenwijk [4] by exploiting the symmetries of

the structures. This project generalizes his approach and applies it to a much wider range

of structures, including Archimedean and Catalan polyhedral and the higher dimensional

regular polytopes. The great advantage of this approach is that it allows the problems to

be solved without the enormous amount of computation that would be involved in a brute

force approach. The simplification comes about because we exploit the symmetries of the

structures to cut down considerably on the number of simultaneous equations that have to

be solved. Most of the results we present here are new and have not previously been reported

in the literature.

A problem related to the one investigated in this project is the resistance between ar-

bitrary nodes of infinite lattices of various kinds. This problem has been investigated for a

variety of three- and higher dimensional lattices in [5], [6], [7], [8], [9], [10].

Although the bulk of this project consists of theoretical work, we have actually con-

structed models of some of the networks and verified our predictions of the effective resis-

tances in them.

Jeremy T. Moody 3 Resistor Networks

2 Automatically Generating Kirchhoff Equations From

an Arbitrary Network

A näıve approach to calculating the equivalent resistance in a network of resistors is to set

up a system of linear equations based on Kirchhoff’s laws for the network with an outside

current passed between the two nodes of interest, and then to solve for the currents through

each edge. Kirchhoff’s current law states that the sum of currents flowing into a node is

equal to the sum of currents exiting the node. Kirchhoff’s voltage law states that sum of

potential differences in any closed loop is zero. This project investigates networks with tens

or hundreds of equations. For this reason, we developed methods for automatic generation of

the Kirchhoff Equations. These equations can be easily solved with standard linear algebra

packages, such as Maple. This allows us to quickly find the resistance between any two nodes

of an arbitrary network.

There are two types of equations we need to generate for any given network. The first of

these, the “node” equations, are defined by Kirchhoff’s Current Law: for each node in the

network, the sum of the currents entering the node is equal to the sum of the currents exiting

the node. These equations are trivial to set up automatically, as the algorithm only needs to

look at the immediate neighbors of each node. The second type, the “loop” equations, are

defined by Kirchhoff’s Voltage Law, which requires that the sum of the voltages around any

closed loop be zero. These are not so simple to generate, as the algorithm must find closed

loops within the network. Additionally, the algorithm should ideally generate only as many

loop equations as are required to completely define our system and not waste time finding

loops that are combinations of already included loops.

To solve this problem, we must generate a basis for the cycle space of our network. To

do this, we first create a spanning tree using a breadth-first search of the network from

the starting node (any spanning tree will work, but this is a convenient way to construct

one). Each edge not in this spanning tree will be part of a distinct cycle in the network. To

Jeremy T. Moody 4 Resistor Networks

generate the full loop from one of these edges, we start at the two endpoints (nodes) of that

edge, and follow the edges going to parent nodes from our spanning tree until we reach a

common ancestor node. Since we used a breadth first search to create the tree, we know the

depth of all the nodes in our network (the minimum number of edges traversed to reach that

node from the starting node), and we know that all the edges not in the spanning tree have

endpoints with depths that differ by no more than one. This means that to find the nearest

common ancestor in the tree, we only need to compare the pairs of equal depth ancestors

of the two nodes until we find the same ancestor. This algorithm does not necessarily find

the smallest loops, but it does guarantee that none of the loops found will be combinations

of previously found loops, and that there will be no other loops in the network that are

not combinations of found loops. To see this, note that any network with H nodes and E

edges will have a cycle space of dimension E − H + 1. The spanning tree contains H − 1

edges, leaving exactly E − H + 1 edges not in the spanning tree. For each of these edges,

we have created one and only one cycle containing that edge. We therefore have E −H + 1

independent cycles, and thus have a basis for the cycle space.

Jeremy T. Moody 5 Resistor Networks

3 Symmetry Method

3.1 Introduction

Figure 3.1: Example Network

The symmetry of the equal-resistor networks we inves-

tigated allows for a clever simplification of the prob-

lem of calculating the effective resistances. The idea,

introduced by van Steenwijk [4] is to model the net-

work when a current I is passed into one node and a

current of I/(H−1) is taken out through the remain-

ing H − 1 nodes. We then solve that system for the

currents through all edges and superimpose it on the

same network with all currents negated and rotated

such that the current I now exits a node of interest. The superimposed system will be one

in which current HI/(H − 1) enters one node and leaves another, and zero current enters or

exits each other node.

This approach has two major benefits. First, since our superimposed system consists of

two networks differing only by rotation, we need only solve the original system of equations

once to obtain the resistance between any two nodes in the network. Second, we can look at

the network as having layers of symmetrically equivalent nodes. Each of the symmetrically

equivalent nodes will give rise to identical circuit equations, so it suffices to consider just a

single node from a layer in setting up the equations. This leads to a significant reduction in

the number of equations that have to be solved.

3.2 Notation

From a network we choose a starting node S, into which the external current I is passed.

We form a layer by first picking a node W in the network not already assigned to a layer,

and then finding all other nodes that, with respect to S, are symmetrically equivalent to W .

Jeremy T. Moody 6 Resistor Networks

Formally, we define a ‘layer’ given any node W as the set of all nodes Wi, such that there

exists an isomorphism f of the network with f(S) = S, and f(W) = Wi. To keep notation

simple, we number these layers in order of their distance from S; however, any numbering

would work. We then define a layer matrix L, for a network with l layers as an l × l matrix

such that

Li,j = number of nodes in layer j connected to any one node in layer i.

We then define Ii,j as the current passing from any node in layer i to a node in layer j.

Again, since the layers are composed of nodes in the orbit of the isomorphism group that

leaves S fixed, all edges connecting a node in layer i to a node in layer j will carry the

same current. It is also important to note the direction of the current. While setting up

our equations, we may not know which direction current will pass through an edge. To stay

consistent, we set up equations such that current passes from a lower numbered layer to a

higher numbered layer. If the current in fact flowed in the opposite direction for some edge,

we would simply obtain a negative value for the current through that edge. After solving

our system of equations for all Ii,j, we can obtain the potential difference from the starting

node S to any desired node T as follows:

(IS,n1 + In1,n2 + · · ·+ Ind,T)R (3.1)

where R is the resistance of a single resistor, and IS,n1 , In1,n2 , · · · , Ind,T are the currents

flowing through edges on any arbitrarily chosen path from node S to node T . In the rotated

system, the potential difference between the same two nodes is:

−
(
IT,nd

+ Ind,nd−1
+ · · ·+ In1,S

)
R (3.2)

Since Ia,b = −Ib,a ∀ a, b, the expressions (3.1) and (3.2) are equal.

Jeremy T. Moody 7 Resistor Networks

The potential difference of the superposition of the original and rotated, current-reversed

systems is the sum of (3.1) and (3.2), or

2 (IS,n1 + In1,n2 + · · ·+ Ind,T)R (3.3)

Since the superposed system has a current of HI/(H − 1) entering node S and exiting

node T , the equivalent resistance between S and T is

Rn = 2 (IS,n1 + In1,n2 + · · ·+ Ind,n)R
(H − 1)

HI
(3.4)

Jeremy T. Moody 8 Resistor Networks

4 Semi-Regular Polyhedra

4.1 Introduction

In this section we investigate specifically the Archimedean and Catalan solids. The methods

we present can be applied to any polyhedron exhibiting a high degree of symmetry, however.

An Archimedean solid is a convex polyhedron consisting of two or more types of regular

polygonal faces meeting at identical nodes. That is to say, the polyhedron appears the same

when viewed from any node. The Catalan solids are the duals of the Archimedean Solids.

(The dual of a polyhedron P is the polyhedron D with nodes corresponding to the faces of

P , with pairs of nodes in D adjacent where the corresponding faces in P are adjacent. The

dual of D is the original polyhedron P .) Among the Platonic solids, the cube and octahedron

are duals, the dodecahedron and icosahedron are duals, and the tetrahedron is self-dual.

Since the nodes of each Archimedean solid are identical, we can apply the symmetry

method with no modification. The Catalan solids, however, have two or three distinct types

of nodes. Because of this, a solution to the symmetry method with a starting node of one

type cannot be transformed into a solution with a starting node of another type. Instead,

we create multiple systems; one for each type of starting node S. To find the equivalent

resistance between two nodes of different types, we make a superposition of the two systems

corresponding to those types, with one rotated appropriately. In practice, this can be treated

as applying equation (3.4) to both systems, and averaging the results. It is important to

note that the layers in the two sets of equations may not match up, so we must be careful

to make sure we choose layers corresponding to the same pair of nodes in both solutions.

4.2 Rhombic Dodecahedron

The rhombic dodecahedron is one of the simplest Catalan solids. To find the equivalent

resistance between nodes using the symmetry method, we must solve two separate sets of

Jeremy T. Moody 9 Resistor Networks

equations. One set is obtained by passing a current of I in through a node of degree four,

and taking a current of I/13 out each of the remaining 13 nodes. This divides the graph into

five layers of equipotential nodes. For each layer, we choose a node and create a Kirchhoff

current equation to describe all the currents entering and leaving that node.

Figure 4.1: Layer diagram of the rhombic dodecahedron starting from a node of degree four

The first step is to set up the layer matrix. The layer diagram shows the starting node

(layer 1) connected to four nodes in layer 2 and to no nodes in any other layer, hence the

first row of the matrix is: [
0 4 0 0 0

]
We then choose any one node in layer 2, and see that it is connected to one node in layer

1 and two nodes in layer 3, making the second row:[
1 0 2 0 0

]

Jeremy T. Moody 10 Resistor Networks

The remaining rows follow similarly, making the full layer matrix:

L4 =



0 4 0 0 0

1 0 2 0 0

0 2 0 2 0

0 0 2 0 1

0 0 0 4 0


(4.1)

Next, we use the layer matrix to set up the current equations:

I − 4I1,2 = 0

I1,2 − 2I2,3 −
I

13
= 0

2I2,3 − 2I3,4 −
I

13
= 0

2I3,4 − I4,5 −
I

13
= 0

4I4,5 −
I

13
= 0

(4.2)

We then repeat the process with the current I now entering a node of degree three:

Figure 4.2: Layer diagram of the rhombic dodecahedron starting from a node of degree three

Jeremy T. Moody 11 Resistor Networks

The layer matrix and node equations for the currents (now denoted J) take the form:

L3 =



0 3 0 0 0 0

1 0 2 1 0 0

0 2 0 0 1 0

0 1 0 0 2 0

0 0 1 2 0 1

0 0 0 0 3 0


(4.3)

I − 3J1,2 = 0

J1,2 − 2J2,3 − J2,4 −
I

13
= 0

2J2,3 − J3,5 −
I

13
= 0

J2,4 − 2J4,5 −
I

13
= 0

J3,5 + 2J4,5 − J5,6 −
I

13
= 0

3J5,6 −
I

13
= 0

(4.4)

Here, there are six equations and six unknown variables, however, one of the equations is

redundant, so we do not have enough to solve the system. We fix that by writing a Kirchhoff

voltage equation for the two distinct paths from layer 2 to layer 5 in figure 4.2: 2→ 3→ 5

and 2→ 4→ 5. This gives the equation:

J2,3 + J3,5 − J2,4 − J4,5 = 0 (4.5)

We now have enough equations to solve both systems to obtain the following values:

I1,2 =
1

4
I I2,3 =

9

104
I I3,4 =

5

104
I I2,3 =

1

52
I (4.6)

Jeremy T. Moody 12 Resistor Networks

J1,2 =
1

3
I J2,3 =

11

156
I J2,4 =

3

26
I J3,5 =

5

78
I J4,5 =

1

52
I J5,6 =

1

39
I

(4.7)

To obtain the resistance between two nodes of degree four, we use equation (3.4) with

the values obtained in (4.6) :

R4,3 = (I1,2 + I2,3)
26

14I
=

5

8

R4,5 = (I1,2 + I2,3 + I3,4 + I4,5)
26

14I
=

3

4

(4.8)

where Ra,b represents the resistance from a starting node of degree a to a node in layer b of

the corresponding layer diagram.

We obtain the resistance between two nodes of degree three similarly, using the values

obtained in (4.7):

R3,3 = (J1,2 + J2,3)
26

14I
=

3

4

R3,4 = (J1,2 + J2,4)
26

14I
=

5

6

R3,6 = (J1,2 + J2,3 + J3,5 + J5,6)
26

14I
=

11

12

(4.9)

To obtain the resistance between a node of degree three and a node of degree four, we

average the values obtained by equation (3.4) with (4.6), and (4.7):

R4,2 = R3,2 = (I1,2 + J1,2)
13

14I
=

13

24

R4,4 = R3,5 = (I1,2 + I2,3 + I3,4 + J1,2 + J2,3 + J3,5)
13

14I
=

19

24

(4.10)

Jeremy T. Moody 13 Resistor Networks

5 The 120 Cell

Figure 5.1: 120-cell

With 1200 edges and 45 node layers, the 120-cell is the most complex of the regular polychora,

and is an excellent example for showing the power of the symmetry method. The näıve

approach described in Section 2 would require solving a system of 1200 variables for each

pair of nodes to be examined. The symmetry method, however, only requires solving a

Jeremy T. Moody 14 Resistor Networks

system of 61 variables, and this system does not need to be modified for each choice of

current-entering and exiting nodes. The regular 120-cell also has the unique property among

four and lower dimensional regular convex polytopes of having nodes from different layers at

the same Euclidean distance from the starting node. This first occurs for layers 8 and 9: for

the regular 120-cell of radius 1, each of these layers is composed of 12 nodes at a distance

of
√

11/8 from the starting node [11]. Remarkably, despite not having the same number

of connections to other layers, the equivalent resistance from the starting node to any node

in either of these layers is the same. Layers 10, 11, and 12 are also equidistant from the

starting node, but layers 10 and 11 consist of four nodes each, while layer 12 consists of 24

nodes. We again find the equivalent resistance to layer 10 and 11 to be the same, while the

resistance to layer 12 differs. In fact, every pair of layers at the same Euclidean distance

to the starting node and with the same number of nodes within the layer have the same

resistance. The layers along with resistance values are summarized in table 5.1.

Layer Coxeter Number of Connections Resistance From Resistance

Section* nodes to Other Starting Node (Decimal)

Layers**

1 0 1 2, 2, 2, 2 0 0

2 1 4 1, 3, 3, 3 599/1200 0.499167

3 2 12 2, 3, 4, 4 299/450 0.664444

4 3 24 3, 4, 5, 7 1789/2400 0.745417

5 4 12 4, 4, 6, 8 429132199/554677200 0.773661

6 5 4 5, 5, 5, 11 48490591/61630800 0.786792

7 6 24 4, 7, 9, 10 881727163/1109354400 0.794811

8 7 12 5, 10,10, 13 225666647/277338600 0.813686

9 7 12 7, 7, 12, 15 225666647/277338600 0.813686

10 8 24 7, 8, 14, 16 455942897/554677200 0.821997

Jeremy T. Moody 15 Resistor Networks

11 8 4 6, 13, 13, 13 30427717/36978480 0.822849

12 8 4 9, 9, 9, 18 30427717/36978480 0.822849

13 9 12 8, 11, 17, 17 462466259/554677200 0.833757

14 9 12 10, 10, 14, 20 462466259/554677200 0.833757

15 10 12 9, 16, 16, 19 77556889/92446200 0.838941

16 11 24 10, 15, 17, 21 34611817/41087200 0.842399

17 12 24 13, 16, 17, 24 940267063/1109354400 0.847580

18 12 4 12, 19, 19, 19 78302369/92446200 0.847005

19 13 12 15, 18, 22, 22 43060369/50425200 0.853945

20 13 12 14, 21, 21, 23 43060369/50425200 0.853945

21 14 24 16, 20, 22, 25 951542863/1109354400 0.857745

22 15 24 19, 21, 22, 29 239412941/277338600 0.863251

23 15 6 20, 20, 26, 26 47879819/55467720 0.863201

24 15 24 17, 24, 25, 27 239412941/277338600 0.863251

25 16 24 21, 24, 26, 30 137567809/158479200 0.868050

26 17 12 23, 25, 25, 32 483007859/554677200 0.870791

27 17 12 24, 24, 28, 31 483007859/554677200 0.870791

28 18 4 27, 27, 27, 34 80877569/92446200 0.874861

29 18 24 22, 29, 30, 33 970386463/1109354400 0.874731

30 19 24 25, 29, 31, 36 671491/765600 0.877078

31 20 12 27, 30, 30, 37 81210889/92446200 0.878466

32 21 12 26, 32, 36, 36 488409659/554677200 0.880530

33 21 12 29, 29, 35, 38 488409659/554677200 0.880530

34 22 4 28, 37, 37, 37 32679277/36978480 0.883738

35 22 4 33, 33, 33, 40 32679277/36978480 0.883738

36 22 24 30, 32, 38, 39 21312439/24116400 0.883732

Jeremy T. Moody 16 Resistor Networks

37 23 12 31, 34, 39, 39 35086721/39619800 0.885586

38 23 12 33, 36, 36, 41 35086721/39619800 0.885586

39 24 24 36, 37, 39, 42 985552963/1109354400 0.888402

40 25 4 35, 41, 41, 41 18284397/20543600 0.890029

41 26 12 38, 40, 42, 42 70603657/79239600 0.891015

42 27 24 39, 41, 42, 43 1264573/1416800 0.892556

43 28 12 42, 42, 43, 44 356602/398475 0.894917

44 29 4 43, 43, 43, 45 634943/708400 0.896306

45 30 1 44, 44, 44, 44 9533/10626 0.897139

Table 5.1: Resistance of the 120-Cell

*H.S.M. Coxeter summarizes the nodes of the regular 120-cell in 31 sections, based on

their Euclidean distance from a starting node. Since some sections contain multiple layers,

the section number is not enough to define all layers. The section numbers, however, are

included as a convenience to understanding the geometry of the 120-cell.

**Rather than include the entire (45× 45) layer matrix, the connectivity information for

the 120-cell is summarized by lists of connected layers. Each node in the 120-cell is adjacent

to four other nodes. We can therefore use the simple notation of listing the layer numbers of

the four nodes connected to any one node in a given layer. For instance, layer 3 is listed as

having connections to 2, 3, 4, 4. This means that each of the 12 nodes in layer 3 is connected

to one node in layer 2, one node in layer 3, and two nodes in layer 4. The third row of the

layer matrix is therefore: [
0 1 1 2 0 0 · · ·

]

Jeremy T. Moody 17 Resistor Networks

6 N-Dimensional Hypercube

The symmetry method introduced in chapter 3 can also be used to determine the resistance

between any two nodes of an N -dimensional hypercube. Each node in layer k is adjacent to

k− 1 nodes in layer k− 1 and N − k+ 1 nodes in layer k+ 1. Since there are no connections

between nodes more than one layer apart, the currents between layers can be found by the

simple recursion relation:

IN,1 =
1

N

IN,k =
1

N − k + 1

[
IN,k−1(k − 1)− 1

2N − 1

] (6.1)

Using these currents with equation (3.4), we can find RN,m, the resistance between two

nodes on an N -dimensional hypercube m edges apart

RN,m =
2N+1 − 2

2N

m∑
k=1

IN,k (6.2)

The first several values of RN,m are given in the table below:

Distance 1D 2D 3D 4D 5D 6D 7D 8D 9D

1 1 3
4

7
12

15
32

31
80

21
64

127
448

255
1024

511
2304

2 1 3
4

7
12

15
32

31
80

21
64

127
448

255
1024

3 5
6

61
96

241
480

131
320

12
35

2105
7168

16531
64512

4 2
3

25
48

101
240

7
20

167
560

929
3584

5 8
15

137
320

2381
6720

10781
35840

42061
161280

6 13
30

343
960

2033
6720

9383
35840

7 151
420

32663
107520

84677
322560

8 32
105

2357
8960

9 83
315

Table 6.1: Resistance of the N -dimensional hypercube

The calculated resistances on the principal diagonal of table 6.1 are in agreement with

the previously published results of Huang and Tretiak [12].

Jeremy T. Moody 18 Resistor Networks

7 Physical Models

For the last part of our project, we wanted to make physical models of some of the networks

to compare the actual measured resistance to that of our theoretical models. We wanted

high precision measurements, so we used 1kΩ ±0.1% tolerance resistors soldered to printed

circuit boards. Figure 7.1 below shows the PCB we used. The contacts are connected in rows

by copper traces. Since the traces have significantly lower resistance than the resistors, we

can treat each row as a node in the network. Resistors are attached to contacts between two

rows of the PCB whenever there is an edge between the corrisponding nodes of the network

Ultiboard-Design_0.20 - 1/18/2013 - 7:10:16 AM

Figure 7.1: Printed circuit board diagram

We used a high precision ohmmeter to measure the resistance between two rows. The

measured and calculated values, expressed as a fraction of the edge resistance, are summa-

rized in tables 7.1 to 7.4.

Jeremy T. Moody 19 Resistor Networks

Distance Measured Calculated

1 .40001 .40000

Table 7.1: Resistance of the 4-simplex

Distance Measured Calculated

1 .29162 .29167

2 .33330 .33333

Table 7.2: Resistance of the 16-cell

Distance Measured Calculated

1 .46878 .46875

2 .58335 .58333

3 .63542 .63542

4 .66666 .66667

Table 7.3: Resistance of the 4-cube

Distance Measured Calculated

Between nodes of degree 3

2 .74989 .75000

4 .83317 .83333

6 .91644 .91666

Between nodes of degree 4

2 .62495 .62500

4 .74992 .75000

Between nodes of degree 3 and 4

1 .54163 .54167

3 .79149 .79167

Table 7.4: Resistance of the rhombic dodecahedron

Some of our measured values match the calculated values to the precision of the ohmmeter

we used. The worst measured value differed from the theoretical value by less than 0.03%.

Jeremy T. Moody 20 Resistor Networks

Since this is better than the manufactured tolerance of the resistors we used, we can assert

that our physical and theoretical models are accurate.

Jeremy T. Moody 21 Resistor Networks

8 Conclusions and Further Study

In this project, we developed novel, efficient, and exact methods for determining the effective

resistance between arbitrary nodes in a variety of symmetric networks of equal resistors,

including several types of networks for which no solutions have previously been published.

An intriguing question that arose from this project is: Are the equivalent resistances

between a node S and T equal, for all T belonging to layers of equal multiplicity and Euclidean

distance from S, if S and T are nodes of a regular polytopal equal-resistor network?

We have only discussed a few cases in te text, but the resistances in many of the other

structures we studied can be found in Appendix C.1.

We observed this to be true in the 120-cell, the only regular convex polytope of dimension

4 or fewer that has such layers. We conjecture that this property might be shared by higher-

dimensional regular polytopes.

While the circuits based on the 600-cell and 120-cell might not be easy to construct, it

might be a useful exercise to calculate the resistances in these structures using the Monte

Carlo method and to corroborate the results obtained here.

Although we investigated a limited number of networks in detail, the modifications we

made to the symmetry method allow it to be used to simplify calculations of resistance on any

network exhibiting symmetry. We constructed physical models of several of these networks

and validated our methods by comparing our calculations with direct measurements of the

physical models.

Jeremy T. Moody 22 Resistor Networks

References

[1] R. P. Feynman, R. B. Leighton, and M. Sands. The Feynman Lectures on Physics,

volume II. Addison-Wesley, 1964.

[2] P.J. Nahin. Mrs. Perkins’s Electric Quilt: And Other Intriguing Stories of Mathematical

Physics. Princeton University Press, 2009.

[3] P.G. Doyle and J.L. Snell. Random walks and electric networks. Carus mathematical

monographs. Mathematical Association of America, 1984.

[4] F. J. van Steenwijk. Equivalent resistors of polyhedral resistive structures. American

Journal of Physics, 66(1):90–91, January 1998.

[5] József Cserti. Application of the lattice Green’s function for calculating the resistance

of an infinite network of resistors. American Journal of Physics, 68(10):896, October

2000.

[6] D. Atkinson and F. J. van Steenwijk. Infinite resistive lattices. American Journal of

Physics, 67(6):486, June 1999.

[7] Monwhea Jeng. Random walks and effective resistances on toroidal and cylindrical

grids. American Journal of Physics, 68(1):37, January 2000.

[8] Raymond A. Sorensen. The random walk method for DC circuit analysis. American

Journal of Physics, 58(11):1056, November 1990.

[9] Leo Lavatelli. The resistive net and finite-difference equations. American Journal of

Physics, 40(9):1246, September 1972.

[10] Giulio Venezian. On the resistance between two points on a grid. American Journal of

Physics, 62(11):1000, September 1994.

Jeremy T. Moody 23 Resistor Networks

[11] H.S.M. Coxeter. Regular Polytopes. Dover books on advanced mathematics. Dover Pub.,

1973.

[12] T. S. Huang and O. J. Tretiak. Resistance of an n-dimensional cube. Proceedings of the

IEEE, 53:1271–1272, September 1965.

[13] Antoni Amengual. The intriguing properties of the equivalent resistances of n equal

resistors combined in series and in parallel. American Journal of Physics, 68(2):175,

February 2000.

Jeremy T. Moody 24 Resistor Networks

Appendices

A Code For Generating Kirchhoff Equations

import java . util . Scanner ;
import java . util . Queue ;
import java . util . LinkedList ;
import java . io . BufferedReader ;
import java . io . File ;
import java . io . FileNotFoundException ;
import java . io . FileReader ;
import java . io . IOException ;
import java . io . Reader ;
import java . util . StringTokenizer ;
pub l i c c l a s s Maplegenerator {

pub l i c s t a t i c void main (String [] args) { // args [0] i s the path to the (.←↩
csv) f i l e conta in ing the network
i n t [] nodedepth , lowerN ;
i n t [] [] network ;
Queue<Integer> q = new LinkedList () ;
Scanner scan = new Scanner (System . in) ;
i n t n , i , j , k , l , m , p , numeq , currentnode , maxdepth =0;
boolean first = true , ndone ;
network = getArray (args [0]) ;
n = network . length ;
lowerN = new i n t [n] ;

System . out . println (”Network Matrix : ”) ;
f o r (i=0;i<n ; i++){

f o r (j=0;j<n ; j++){
i f (network [i] [j] == −1) System . out . print (”−1 ”) ;
e l s e System . out . print (” ” + network [i] [j] + ” ”) ;

}
System . out . println () ;

}

/∗∗ Begin Maple code gene ra t i on ∗∗/
System . out . println (”\n\n\ n r e s t a r t ; ”) ;

/∗∗ Node Equations ∗∗/
f o r (i=0;i<n ; i++){

System . out . print (”e”+i+” :=”) ;
f o r (j=0;j<n ; j++){

i f (network [i] [j] == 1)
System . out . print (” + i ” + i + ” t ” + j) ;

e l s e i f (network [i] [j] == −1)
System . out . print (” − i ” + j + ” t ” + i) ;

Jeremy T. Moody 25 Resistor Networks

}
i f (i==0)

System . out . println (” = 1 : ”) ;
e l s e i f (i==1)

System . out . println (” = −1:”) ;
e l s e

System . out . println (” = 0 : ”) ;
}

System . out . println () ;

/∗∗ Loop Equations ∗∗/
numeq = n−1;

/∗∗ F i r s t number the nodes o f the matrix by d i s t ance from node zero us ing a ←↩
breadth f i r s t search ∗∗/

nodedepth = new i n t [n] ;
f o r (i=1;i<n ; i++){

nodedepth [i]=−1;
}
nodedepth [0] = 0 ;
q . add (0) ;
whi l e (! q . isEmpty ()) {

currentnode=q . remove () ;
f o r (i=1;i<n ; i++){

i f (network [i] [currentnode] != 0 && nodedepth [i] == −1){
nodedepth [i] = nodedepth [currentnode] + 1 ;
lowerN [i] = currentnode ; //←↩

Remember the parent o f each node f o r easy loop ←↩
c on s t r u c t i on .

i f (nodedepth [i]>maxdepth) {
maxdepth = nodedepth [i] ;

}
q . add (i) ;

}
}

}

f o r (j=1;j<n ; j++){
i = nodedepth [j] ;
f o r (k=0;k<n ; k++){

i f (network [j] [k] != 0 && nodedepth [k]==i−1){ // f i n d a l l ←↩
nodes connected to node ” j ” at l e v e l i −1.
f o r (l=k+1;l<n ; l++){ //Find a l l nodes ←↩

g r e a t e r than ”k” connected to node ” j ” at l e v e l i −1.
i f (network [j] [l] != 0 && nodedepth [l]==i−1){

numeq++;
System . out . print (”e” + numeq + ” := ”) ;
i f (j>k) System . out . print (”− i ” + k + ” t ” + j) ;
e l s e System . out . print (” i ” + j + ” t ” + k) ;
i f (j>l) System . out . print (” + i ” + l + ” t ” + j) ;
e l s e System . out . print (” − i ” + j + ” t ” + l) ;
ndone = true ;
i n t k1 = k , l1 = l ;

Jeremy T. Moody 26 Resistor Networks

whi le (ndone) {
i f (k>lowerN [k1]) System . out . print (” − i ” + ←↩

lowerN [k1] + ” t ” + k1) ;
e l s e System . out . print (” + i ” + (k1+1) + ” t ”←↩

+ lowerN [k1]) ;
i f (l1>lowerN [k1]) System . out . print (” + i ” + ←↩

lowerN [l1] + ” t ” + l1) ;
e l s e System . out . print (” − i ” + (l1+1) + ” t ” ←↩

+ lowerN [l1]) ;
i f (lowerN [k1] == lowerN [l1])

ndone = f a l s e ;
e l s e {

k1=lowerN [k1] ;
l1=lowerN [l1] ;

}
}
System . out . println (” = 0 : ”) ;

}
}
break ;

}
}

f o r (k=j+1;k<n ; k++){
i f (network [j] [k] != 0 && nodedepth [k]==i) { // f i n d a l l nodes←↩

g r e a t e r than j connected to ” j ” at l e v e l i .
numeq++;
System . out . print (”e” + numeq + ” := i ” + j + ” t ” + k) ;
ndone = true ;
i n t j1 = j , k1 = k ;
wh i l e (ndone) {

i f (k1>lowerN [k1]) System . out . print (” − i ” + lowerN [←↩
k1] + ” t ” + k1) ;

e l s e System . out . print (” + i ” + k1 + ” t ” + lowerN [k1←↩
]) ;

i f (j1>lowerN [j1]) System . out . print (” + i ” + lowerN [←↩
j1] + ” t ” + j1) ;

e l s e System . out . print (” − i ” + j1 + ” t ” + lowerN [j1←↩
]) ;

i f (lowerN [k1] == lowerN [j1])
ndone = f a l s e ;

e l s e {
k1=lowerN [k1] ;
j1=lowerN [j1] ;

}
}
System . out . println (” = 0 : ”) ;

}
}

}

/∗∗ Solve , Assign ∗∗/
System . out . print (” s := s o l v e ({ ”) ;
f o r (i=0;i<numeq ; i++){

Jeremy T. Moody 27 Resistor Networks

System . out . print (”e” + i + ” , ”) ;
}
System . out . print (”e” + numeq + ” } ,{ ”) ;
f o r (i=0;i<n ; i++){

f o r (j=i+1;j<n ; j++){
i f (network [i] [j]==1)

i f (first) {
System . out . print (” i ” + i + ” t ” + j) ;
first=f a l s e ;

}
e l s e

System . out . print (” , i ” + i + ” t ” + j) ;
}

}
System . out . print (” }) ;\ nass i gn (s) : ”) ;

}

pub l i c s t a t i c i n t [] [] getArray (String file) {
i n t [] [] network = n u l l ;
i n t size = 0 ;
t ry {

BufferedReader br = new BufferedReader (new FileReader (file)) ;
String line = br . readLine () ;
i n t row = 0 ;
i n t col = 0 ;
StringTokenizer st = new StringTokenizer (line , ” , ”) ;
whi l e (st . hasMoreTokens ())
{

st . nextToken () ;
size++;

}
network = new i n t [size] [size] ;

wh i l e (line != n u l l)
{

StringTokenizer st2 = new StringTokenizer (line , ” , ”) ;
whi l e (st2 . hasMoreTokens ())
{

network [row] [col] = Integer . parseInt (st2 . nextToken ()) ;
col++;

}
col =0;
row++;
line = br . readLine () ;

}
br . close () ;

}
catch (Exception e) {
}
re turn network ;

}
}

Jeremy T. Moody 28 Resistor Networks

B Sample Input and Output

The following input for the code in Appendix A represents a Rhombic Dodecahedron.

RhombicD . csv

0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

−1 ,0 ,0 ,0 ,1 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0

−1 ,0 ,0 ,0 ,1 ,0 ,1 ,0 ,1 ,0 ,0 ,0 ,0 ,0

−1 ,0 ,0 ,0 ,0 ,1 ,1 ,0 ,0 ,0 ,1 ,0 ,0 ,0

0 ,−1 ,−1 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0

0 ,−1 ,0 ,−1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0

0 ,0 ,−1 ,−1 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0

0 ,0 ,0 ,0 , −1 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,1 ,1

0 ,0 ,−1 ,0 ,0 ,0 ,0 ,−1 ,0 ,1 ,0 ,0 ,0 ,0

0 ,0 ,0 ,0 ,0 ,0 ,−1 ,0 ,−1 ,0 ,1 ,0 ,0 ,1

0 ,0 ,0 ,−1 ,0 ,0 ,0 ,0 ,0 ,−1 ,0 ,1 ,0 ,0

0 ,0 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,0 ,−1 ,0 ,1 ,1

0 ,−1 ,0 ,0 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,−1 ,0 ,0

0 ,0 ,0 ,0 ,0 ,0 ,0 ,−1 ,0 ,−1 ,0 ,−1 ,0 ,0

This results in the following output from the program:

Network Matrix :

0 1 1 1 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 1 1 0 0 0 0 0 0 1 0

−1 0 0 0 1 0 1 0 1 0 0 0 0 0

−1 0 0 0 0 1 1 0 0 0 1 0 0 0

0 −1 −1 0 0 0 0 1 0 0 0 0 0 0

0 −1 0 −1 0 0 0 0 0 0 0 1 0 0

0 0 −1 −1 0 0 0 0 0 1 0 0 0 0

0 0 0 0 −1 0 0 0 1 0 0 0 1 1

0 0 −1 0 0 0 0 −1 0 1 0 0 0 0

0 0 0 0 0 0 −1 0 −1 0 1 0 0 1

0 0 0 −1 0 0 0 0 0 −1 0 1 0 0

0 0 0 0 0 −1 0 0 0 0 −1 0 1 1

Jeremy T. Moody 29 Resistor Networks

0 −1 0 0 0 0 0 −1 0 0 0 −1 0 0

0 0 0 0 0 0 0 −1 0 −1 0 −1 0 0

restart ;

e0 := + i0t1 + i0t2 + i0t3 = 1 :

e1 := − i0t1 + i1t4 + i1t5 + i1t12 = −1:

e2 := − i0t2 + i2t4 + i2t6 + i2t8 = 0 :

e3 := − i0t3 + i3t5 + i3t6 + i3t10 = 0 :

e4 := − i1t4 − i2t4 + i4t7 = 0 :

e5 := − i1t5 − i3t5 + i5t11 = 0 :

e6 := − i2t6 − i3t6 + i6t9 = 0 :

e7 := − i4t7 + i7t8 + i7t12 + i7t13 = 0 :

e8 := − i2t8 − i7t8 + i8t9 = 0 :

e9 := − i6t9 − i8t9 + i9t10 + i9t13 = 0 :

e10 := − i3t10 − i9t10 + i10t11 = 0 :

e11 := − i5t11 − i10t11 + i11t12 + i11t13 = 0 :

e12 := − i1t12 − i7t12 − i11t12 = 0 :

e13 := − i7t13 − i9t13 − i11t13 = 0 :

e14 := −i1t4 + i2t4 − i0t1 + i0t2 = 0 :

e15 := −i1t5 + i3t5 − i0t1 + i0t3 = 0 :

e16 := −i2t6 + i3t6 − i0t2 + i0t3 = 0 :

e17 := −i4t7 − i7t8 − i1t4 + i2t8 − i0t1 + i0t2 = 0 :

e18 := −i4t7 − i7t12 − i1t4 + i1t12 = 0 :

e19 := −i6t9 + i8t9 − i2t6 + i2t8 = 0 :

e20 := −i6t9 − i9t10 − i2t6 + i3t10 − i0t2 + i0t3 = 0 :

e21 := −i5t11 + i10t11 − i1t5 + i3t10 − i0t1 + i0t3 = 0 :

e22 := −i5t11 − i11t12 − i1t5 + i1t12 = 0 :

e23 := −i7t13 + i9t13 − i4t7 + i6t9 − i1t4 + i2t6 − i0t1 + i0t2 = 0 :

e24 := −i7t13 + i11t13 − i4t7 + i5t11 − i1t4 + i1t5 = 0 :

Jeremy T. Moody 30 Resistor Networks

s := solve ({e0 , e1 , e2 , e3 , e4 , e5 , e6 , e7 , e8 , e9 , e10 , e11 , e12 , e13 , e14 ,←↩

e15 , e16 , e17 , e18 , e19 , e20 , e21 , e22 , e23 , e24 } ,{i0t1 , i0t2 , i0t3 , ←↩

i1t4 , i1t5 , i1t12 , i2t4 , i2t6 , i2t8 , i3t5 , i3t6 , i3t10 , i4t7 , i5t11 , i6t9←↩

, i7t8 , i7t12 , i7t13 , i8t9 , i9t10 , i9t13 , i10t11 , i11t12 , i11t13 }) ;

assign (s) :

The output (starting at the word “restart;”) is a Maple program, which solves for all

currents in the network when a current of 1 enters node 0, and exits node 1, as seen in the

first two node equations (e0 and e1). The currents entering or exiting nodes can be changed

by modifying the right-hand-side of the node equations, and running the Maple program

again. The potential difference between the current-entering and current-exiting nodes is

the sum of the currents along any path between the two nodes, multiplied by the resistance

of a single resistor (1 Ω). The resistance between the nodes is this potential divided by the

entering and exiting current (1 A).

Given the code above, Maple outputs the following:

{i0t1 = 13/24 , i0t2 = 11/48 , i0t3 = 11/48 , i10t11 = 1/16 , i11t12 = 1/16 , ←↩

i11t13 = −1/48 , i1t12 = −1/8, i1t4 = −1/6, i1t5 = −1/6, i2t4 = 7/48 , i2t6←↩

= 1/48 , i2t8 = 1/16 , i3t10 = 1/16 , i3t5 = 7/48 , i3t6 = 1/48 , i4t7 = ←↩

−1/48 , i5t11 = −1/48 , i6t9 = 1/24 , i7t12 = 1/16 , i7t13 = −1/48 , i7t8 = ←↩

−1/16 , i8t9 = 0 , i9t10 = 0 , i9t13 = 1/24}

This shows the resistance between nodes 0 and 1 is 13/24 Ω.

Jeremy T. Moody 31 Resistor Networks

C Resistance of Selected Networks

C.1 Regular Convex Polychora

Distance Resistance (Exact) Resistance (Decimal)
1 2/5 0.40000

Table C.1: 5-cell (simplex)

Distance Resistance (Exact) Resistance (Decimal)
1 15/32 0.46875
2 7/12 0.58333
3 61/96 0.63542
4 2/3 0.66667

Table C.2: 8-cell (4-cube)

Distance Resistance (Exact) Resistance (Decimal)
1 7/24 0.29167
2 1/3 0.33333

Table C.3: 16-cell

Distance Resistance (Exact) Resistance (Decimal)
1 23/96 0.23958
2 11/40 0.27500
3 139/480 0.28958
4 3/10 0.30000

Table C.4: 24-cell

Distance Resistance (Exact) Resistance (Decimal)
1 119/720 0.16528
2 14293/75600 0.18906
3 737/3780 0.19497
4 1903/9450 0.20138
5 37/180 0.20556
6 5231/25200 0.20758
7 3179/15120 0.21025
8 40/189 0.21164

Table C.5: 600-cell

Jeremy T. Moody 32 Resistor Networks

C.2 Archimedean Solids

Distance Resistance (Exact) Resistance (Decimal)
1 11/24 0.45833
2 7/12 0.58333
3 5/8 0.62500
4 2/3 0.66667

Table C.6: Cuboctahedron

Distance Resistance (Exact) Resistance (Decimal)
1 29/60 0.48333
2 61/90 0.67778
2 127/180 0.70556
3 7/9 0.77778
3 49/60 0.81667
4 38/45 0.84444
4 157/180 0.87222
5 8/9 0.88889

Table C.7: Icosidodecahedron

C.3 Catalan Solids

Distance Resistance (Exact) Resistance (Decimal)
Between nodes of degree 3
2 3/4 .75000
4 5/6 .83333
4 11/12 .91666
Between nodes of degree 4
2 5/8 .62500
4 3/4 .75000
Between nodes of degree 3 and 4
1 13/24 .54167
3 19/24 .79167

Table C.8: Rhombic dodecahedron

Jeremy T. Moody 33 Resistor Networks

Distance Resistance (Exact) Resistance (Decimal)
Between nodes of degree 3
2 67/90 0.74444
2 151/180 0.83889
4 43/45 0.95556
4 179/180 0.99444
6 61/60 1.01667
Between nodes of degree 5
2 11/20 0.55000
4 7/10 0.70000
6 3/4 0.75000
Between nodes of degree 3 and 5
1 31/60 0.51667
3 3/4 0.75000
3 4/5 0.80000
5 13/15 0.86667

Table C.9: Rhombic triacontahedron

Jeremy T. Moody 34 Resistor Networks

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Executive Summary
	Introduction
	Automatically Generating Kirchhoff Equations From an Arbitrary Network
	Symmetry Method
	Introduction
	Notation

	Semi-Regular Polyhedra
	Introduction
	Rhombic Dodecahedron

	The 120 Cell
	N-Dimensional Hypercube
	Physical Models
	Conclusions and Further Study
	References
	Appendices
	Code For Generating Kirchhoff Equations
	Sample Input and Output
	Resistance of Selected Networks
	Regular Convex Polychora
	Archimedean Solids
	Catalan Solids

