Problem 3.2 Apply nodal analysis to determine V_{x} in the circuit of Fig. P3.2.

Figure P3.2: Circuit for Problem 3.2.

Solution: At node V, application of KCL gives

$$
\frac{V}{2+1}-3+\frac{V}{2+4}=0
$$

which leads to

$$
V=6 \mathrm{~V}
$$

By voltage division,

$$
V_{x}=\frac{V \times 4}{2+4}=\frac{6 \times 4}{6}=4 \mathrm{~V} .
$$

Problem 3.3 Use nodal analysis to determine the current I_{x} and amount of power supplied by the voltage source in the circuit of Fig. P3.3.

Figure P3.3: Circuit for Problem 3.3.

Solution: At node V, application of KCL gives

$$
\begin{gathered}
-9+\frac{V}{2}+\frac{V}{4}+\frac{V-40}{8}=0 \\
V\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\right)=9+\frac{40}{8} \\
\frac{7 V}{8}=9+5 \\
V=16 \mathrm{~V}
\end{gathered}
$$

The current I_{x} is then given by

$$
I_{x}=\frac{V}{4}=\frac{16}{4}=4 \mathrm{~A}
$$

To find the power supplied by the $40-\mathrm{V}$ source, we need to first find the current I flowing into its positive terminal,

$$
I=\frac{V-40}{8}=\frac{16-40}{8}=-3 \mathrm{~A}
$$

Hence,

$$
P=V I=40 \times(-3)=-120 \mathrm{~W}
$$

(The minus sign confirms that the voltage source is a supplier of power.)

Problem 3.4 For the circuit in Fig. P3.4:
(a) Apply nodal analysis to find node voltages V_{1} and V_{2}.
(b) Determine the voltage V_{R} and current I.

Figure P3.4: Circuit for Problem 3.4.

Solution: (a) At nodes V_{1} and V_{2},

$$
\begin{array}{ll}
\text { Node 1: } & \frac{V_{1}-16}{1}+\frac{V_{1}}{1}+\frac{V_{1}-V_{2}}{1}=0 \\
\text { Node 2: } & \frac{V_{2}-V_{1}}{1}+\frac{V_{2}}{1}+\frac{V_{2}}{1}=0 \tag{2}
\end{array}
$$

Simplifying Eqs. (1) and (2) gives:

$$
\begin{align*}
3 V_{1}-V_{2} & =16 \tag{3}\\
-V_{1}+3 V_{2} & =0 \tag{4}
\end{align*}
$$

Simultaneous solution of Eqs. (3) and (4) leads to:

$$
V_{1}=6 \mathrm{~V}, \quad V_{2}=2 \mathrm{~V}
$$

(b)

$$
\begin{aligned}
V_{\mathrm{R}} & =V_{1}-V_{2}=6-2=4 \mathrm{~V} \\
I & =\frac{V_{2}}{1}=\frac{2}{1}=2 \mathrm{~A}
\end{aligned}
$$

Problem 3.10 The circuit in Fig. P3.10 contains a dependent current source. Determine the voltage V_{x}.

Figure P3.10: Circuit for Problem 3.10.

Solution: In terms of the node voltage V_{x}, KCL gives

$$
\frac{V_{x}-6}{2}+\frac{V_{x}}{3}-2 V_{x}+\frac{V_{x}}{6}=0
$$

whose solution leads to

$$
V_{x}=-3 \mathrm{~V}
$$

Problem 3.14 Apply nodal analysis to find the current I_{x} in the circuit of Fig. P3.14.

Figure P3.14: Circuit for Problem 3.14.

Solution: Application of KCL to the designated node voltages V_{1}, V_{2}, and V_{3} gives

$$
\begin{align*}
\frac{V_{1}-2}{0.1}+\frac{V_{1}-V_{2}}{0.5}+\frac{V_{1}-V_{3}-4}{0.2} & =0 \tag{1}\\
\frac{V_{2}-V_{1}}{0.5}+\frac{V_{2}}{0.1}+\frac{V_{2}-V_{3}}{0.5} & =0 \tag{2}\\
\frac{V_{3}-V_{1}+4}{0.2}+\frac{V_{3}-V_{2}}{0.5}+\frac{V_{3}-3}{0.1} & =0 \tag{3}
\end{align*}
$$

Simplification, followed with simultaneous solution, leads to

$$
V_{1}=2.865 \mathrm{~V}, \quad V_{2}=0.625 \mathrm{~V}, \quad V_{3}=1.51 \mathrm{~V}
$$

and

$$
I_{x}=\frac{V_{2}}{0.1}=\frac{0.625}{0.1}=6.25 \mathrm{~A}
$$

Problem 3.26 Apply mesh analysis to find the mesh currents in the circuit of Fig. P3.26. Use the information to determine the voltage V.

Figure P3.26: Circuit for Problem 3.26.

Solution: Application of KVL to the two loops gives:

$$
\begin{array}{ll}
\text { Mesh 1: } & -16+2 I_{1}+3\left(I_{1}-I_{2}\right)=0 \\
\text { Mesh 2: } & 3\left(I_{2}-I_{1}\right)+(2+4) I_{2}+12=0
\end{array}
$$

which can be simplified to

$$
\begin{align*}
5 I_{1}-3 I_{2} & =16 \tag{1}\\
-3 I_{1}+9 I_{2} & =-12 \tag{2}
\end{align*}
$$

Simultaneous solution of (1) and (2) leads to

$$
I_{1}=3 \mathrm{~A}, \quad I_{2}=-\frac{1}{3} \mathrm{~A}
$$

Hence,

$$
V=3\left(I_{1}-I_{2}\right)=3\left(3+\frac{1}{3}\right)=10 \mathrm{~V}
$$

Problem 3.31 Apply mesh analysis to determine the amount of power supplied by the voltage source in Fig. P3.31.

Figure P3.31: Circuit for Problem 3.31.

Solution:

$$
\begin{array}{ll}
\text { Mesh 1: } & 2 I_{1}+3\left(I_{1}-I_{3}\right)+2\left(I_{1}-I_{2}\right)+48=0 \\
\text { Mesh 2: } & -48+2\left(I_{2}-I_{1}\right)+6\left(I_{2}-I_{3}\right)+4 I_{2}=0 \\
\text { Mesh 3: } & I_{3}=-4 \mathrm{~A} .
\end{array}
$$

Solution is:

$$
I_{1}=-8.4 \mathrm{~A}, \quad I_{2}=0.6 \mathrm{~A}, \quad I_{3}=-4 \mathrm{~A}
$$

Current entering " + " terminal of voltage source is:

$$
I=I_{1}-I_{2}=-8.4-0.6=-9 \mathrm{~A}
$$

Hence,

$$
P=V I=48 \times(-9)=-432 \mathrm{~W} .
$$

Problem 3.34 Apply mesh analysis to the circuit in Fig. P3.34 to determine V_{x}.

Figure P3.34: Circuit for Problem 3.34.

Solution:

$$
\begin{array}{ll}
\text { Mesh 1: } & -6+2 I_{1}+3\left(I_{1}-I_{2}\right)=0 \\
\text { Supermesh: } & 3\left(I_{2}-I_{1}\right)+6 I_{3}=0 \\
\text { Auxiliary 1: } & I_{3}-I_{2}=2 V_{x} \\
\text { Auxiliary 2: } & V_{x}=6 I_{3}
\end{array}
$$

Solution is:

$$
\begin{gathered}
I_{1}=4.5 \mathrm{~A}, \quad I_{2}=5.5 \mathrm{~A}, \quad I_{3}=-0.5 \mathrm{~A} \\
V_{x}=6 I_{3}=6 \times(-0.5)=-3 \mathrm{~V}
\end{gathered}
$$

