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CHAPTER THREE

INTRODUCTION TO TWO-HINGED ARCHES

3.0. TWO-HINGED ARCHES:-

The following issues should be settled first.
- Definition.
- Types.
- Basic Principle and B.M.
- Linear Arch.
- Mathematical Generalized Expressions.
- Segmental Arches.

Some information is contained elsewhere where determinate arches have been dealt.

3.1. DEFINITION OF AN ARCH.

“An arch can be defined as a humped or curved beam subjected to transverse and other loads as
well as the horizontal thrust at the supports.” An efficient use of an arch can be made only if full horizontal
restraint is developed at the supports. If either of the support allows some movement in the horizontal
direction, it will tend to increase the B.M. to which an arch is subjected and arch would become simply a
curved beam.

The B.M., in arches due to the applied loads is reduced due to the inward thrust. Analysis is
carried out to find the horizontal thrust and also to find the B.M., to which an arch is subjected.

Beam action Vs arch action :

P P
b |
A L B
R Simpl Tb bjecte t li d&
imple beam subjecte to applie
Valﬁ transverse loads. %Vb

One reaction at support only

P P P
Support, l
abutments or

springing.

H
Hy B
Zlé Zﬁ Two reactions at supports
Va X —>| Vb
Arch carrying vertical loads & horizontal

thrust

The above beam and arch carry similar loadings.
If Mo = B.M. due to applied loads at a distance X on the simple span of a simple beam where rise is y.
then bending moment in the arch is, My = Mo + Hy

where My is the B.M., in the arch at a distance X . H is the horizontal thrust at the springings & y
is the rize of the arch at a distance. ‘x” as shown in the diagram. The ( %) sign is to be used with care and a
(-) sign will be used if the horizontal thrust is inwards or vice versa. In later case it will behave as a beam.
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Heon B <«

T Va TVb

Under transverse loads, the horizontal thrust at either of the springings abutments is equal. In the
arch shown above, the degree of indeterminacy is one and let us consider the horizontal thrust at support B
as the redundant. The above loaded arch can be considered equal to the following two diagrams wherein a
BDS arch is under the action of loads plus the same BDS arch under the action of inward unit horizontal
load at the springings.

B.D.S. under applied loads (loads try to flatten the arch)
ABL stands for displacement of point B due to applied loads in a BDS arch..
+

(Flattened arch recovers some of horizontal displacement at B due to unit horizontal loads and will recover
fully if full horizontal thirst is applied at B.)

(Arch flattens out under the action of applied loads because freedom in the horizontal direction has been
provided at point B.) and all due to full redundant value. This forces the basis of compatibility.

ABR stands for displacement of point. B (in the direction of force) due to unit horizontal redundant force at B.
Remember that a horizontal reactive component cannot be realized at the roller support. However, we can
always apply a horizontal force at the roller.

3.2. Compatibility equation.

ABL—-(ABR)H = 0  (Ifunitload is applied in opposite sense so that it also produces
flettening, +ve sign may be used in the equation and the final sign with H will be self adjusting.)
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ABL displacement at B due to loads
ABR T displacement at B due to unit horizontal redundant

orH=

We will be considering strain energy stored in bending only.The modified expression for that for
curved structural members is as follows.

MZds
2El

Where ds is the elemental length along the centre line of the arch and U is the strain energy stored
in bending along centre-line of arch. The bending moment at a distance x from support is

u=/

My = Mo — Hy (Horizontal thrust is inwards). Q)

Where Mo = Simple span bending moment ( S.S.B.M.) in a similar loaded simple beam.

M? ds
2El
If H is chosen as redundant, then differentiating U w.r.t. H , we have

U =

oU 1 oM . .
oH - ABH =0 _J.EI .M. (8H) ds Put M= Mo - Hy and then differentiate.
ou

H- ABH=0= J‘% (Mo — Hy)(-y) ds by putting M from (1)

! 22_ !? - . .
O:J. H :;/:0 ds Simlifying

Hy? ds Mo yds _ 0
El El
Hy*ds [ Mo yds
El 7 El
or
JMoy.ds
___El
T jyds
El
Applying Castigliano’s 2nd theorem, ABL becomes = J.M—OElw

2
and ABR = I%ds
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The algebraic integration of the above integrals can also be performed in limited number of cases
when El is a suitable function of S ( total curved arch length), otherwise, go for numerical integration.

For prismatic (same cross section) members which normally have El constant, the above
expression can be written as follows:

IMoyds
H = [ y?ds

3.3. TYPES OF ARCHES :-
The arches can be classified into a variety of ways depending mainly upon the material of
construction and the end conditions.

(1) Classification Of Arches Based On Material of Construction :—

The following arches fall in this particular category:

a) Brick masonary arches.
b) Reinforced concrete arches.
C) Steel arches.

The span of the arches which can be permitted increases as we approach steel arches from the
brick masonary arches.

(2) Classification Of Arches Based On End Conditions :—

The following arches fall in this particular category:

a) Three hinged arches.
b) Two hinged arches.
c) Fixed arches.

In the ancient times, three hinged arches have been used to support wide spans roofs. However,
their use is very rare in bridge construction since the discontinuity at the crown hinge is communicated to
the main deck of the bridge. In three hinged arches, all reactive components are found by statical
considerations without considering the deformations of the arch rib. Therefore, they are insensitive to
foundation movements and temperature changes etc., and are statically determinate. These are covered as a
separate chapter in this book.

The Romans exploited the potential of arches to a great extent. However, their emperical analysis
approach became available in the early 18th century.

3.4. LINEAR ARCH :—
This is just a theoretical arch at every X—section of which the B.M. is zero.
M =M,-Hy=0
or M, = Hy (The B.M. due to applied loads is balanced by Hy).

(]

M
therefore, y = H
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This is the equation for the centre line of a linear arch. With the change in position and the number
of loads on the arch, the corresponding linear arch would also change as M, keeps on changing. Therefore,
there are infinite number of such arches for every load pattern and position on the actual arch.

EXAMPLE NO. 1:

3.5. ANALYSIS OF TWO - HINGED SEGMENTAL ARCHES

We develop the method for indeterminate arches starting with the simplest cases of segmental arches. Solve the
following segmental arch by using the basic principles of consistent deformation method and by treating horizontal
thrust at support D as the redundant. The segmental arches could be used in tunnels and in water ways.

20KN/m
BW

4m  El=Constant
ol

C
2ma
1

4m ,
8m i

20KN/m
BW

40 kN

\ T
4m  El=Constant
D l
A2M, 4m L2MA
— 8m i 1
40 kN 40 kN

(Ha will occur only point D is a hinge support)
M — Diagram. Due to applied loads. Similarly reactions due to supermetrical loading.

B

+
C
—

DR
m — Diagram.  Due to unit redundant at D.
(X is varied along length of members). Find Cos6 and Sin6.
cos 6 =0.4472 , sin 6 = 0.8944.
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—-40 . A - .
Sab sin 6 + 40 =0 so Sab= 08942 = —44.722. Consider equilibrium of joint A and project forces

in y-direction. (M-diagram)

Consider same diagram with roller at D. Now consider joint A and Project forces in X direction to
evaluate Ha. Sab Cos6 + Ha =0 or —44.722 x 0.4472 + Ha=0
or Ha= 20KN
Compatibility equation

ADL-ADR.H =0

or H = ADL Horizontal displacement of D due to loads
"H=ADR ~ Horizontal displacement of D due to redundants
Mmdx
ADL = El

Applying Unit load method concepts,

2
m- dx
ADR = El
Now we attempt the evaluation of these integrals in a tabular form. X is measured along member
axis.
Mem | Origin. | Limits. M m
ber
AB A 0-4.472 | 40 X Cos6 +1.XSin6=+0.894X
=40X0.477=17.88X
BC B 0-4 40(2+X)-10X*= +4
80 + 40 X-10 X?
CD D 0-4.472 | 17.88 X +0.894 X
MmdX 1 4.472
ADL = E = EJ (17.88X)(+0.894X)dX + & I 80+40X —10X)(+4) dX
1 4.472
* 5 (17.88 X)(+0.894 X) dX
o
2 4.472
= E (+15.985 X?)dX + =, I(+320+160X 40X?) dX Integrate and put limits
0o
+31.969 | X3|*4" 160x%  40x2 |*
- +EI‘+SZOX+ 2 "3 |,
+10 656

1 40
= == (4.472°- 0)+—(+320x4+80x16—?x16)
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+2659.72
ADL = El
2 4.472 4 4.472
_(mdx 1 2 1 1 2
ADR _j B - El (+0.894X) dX+E|£16 dX+E|0 (+ 0.894X)? dX
o 4472 , 164
=& 0.799 X dx+E|£dx
1598 | X* | ** 16 !
=B |3 gl X
0.533 16
= 5 [(4.472)° - 0] + £ (4-0)
111.653
ADR = =,
ADL
H = ADR
_ 2659.72/EI
~ 111.653/El
H =23.82 KN
EXAMPLE NO. 2:— Solve the following arch by using consistent deformation method.

20KN/m
40KN BMC

I

4m EI-Constt

ol

2m 4m 2m

Je "3 ) L

1 1 1 Ed
The above redundant / segmental arch can be replaced by the following similar arches carrying loads
and redundant unit load.

40KN rs

20KN/m

X'is varied along
member lengths.

4m

TRa:ZOKN %ﬁb
RA=60KN

M-Diagram

BDS UNDER LOADS
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Ma=0; Rdx8=20x4x4+40x4
Rd =60 KN so Ra=20KN

+
¥ c
X is varied along
member lengths.
D_1
ADR
m — Diagram

BDS UNDER UNIT REDUNDANT AT D

Compatibility equation is
ADL —ADRH=0

Where ADL = Horizontal deflection of D in BDS due to applied loads.

ADR = Horizontal deflection at D due to Unit redundant.
H = Total Horizontal redundant.
ADL
Or H = \DR
and ADL = Mmdx
El
2
m* dX
ADR El
Member | Origin | Limits M m El
AB A 0-4.472 | 20X Cos0+40X Sind XSin6=0.894X | Constt.
20X x0.447+40X x 0.894
=44.72X
BC B 0-4 | 20(2+X)+40 x 4 —-10X? Constt.
40+20X +160 — 10X*= +4
—10X? + 20X + 200
CD D 0-4.472 | 60X Cos6=60X x 0.447 0.894X Constt.
=26.82 X
MmdxX 1 %47 14
ADL = [ 282 - Epl (+44.72X)(0.894X) dX + EI (-10X2+20X — 200 ) 4 dX
[0} (0]
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4472

+

(26.82X ) (0.894X)dX

E0
2x23.977 [* X°| 4 | -10x® 20x? 4
133X = = o3 +E|‘ 3t +2oox0
_ 6397 [4.472°7 4 [-10 ) }_+4893.8
ADL = El [ 3 }"'EI[ 3 x4°+10x4°+200x 4 |= El
2 4.472 4 4.472
_(mdxX _ 1 2, L 1 2
ADR =| =g _E|£ (0.894X)? + EI£16dx+EIO (0.894X)
4.472 4
16
_ = 2 =
=&/ 0.799X dX+E|£dX
_ 1.508 &3 4.472+ E| « |4
- El |3 El .
0.533 16
=g [(4472°-0]1+ 5 (4-0)
111.653
ADR ==7F
ADL
H = ADR
_ +4893.8/EI
T 111.653/El

So [ H=+43.83KN |

EXAMPLE NO. 3:- Determine the horizontal thrust for the for following loaded segmental arch. Take El
equal to constant.

P

b L

3m

4m

’4:;3m 4m 5m 4m SnA
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SOLUTION :—

X is varied along
member length

|

P
Now consider a BDS under Loads and redundant separately for the same arch and evaluate integrals.

An inspection of the arch indicates that it is symmetrical about point G and is indeterminate to the first
degree choosing horizontal reaction at F as the redundant, we draw two basic determinate structures under
the action of applied loads and the redundant horizontal thirst at support F.

P P
X J/

F
A?m 4m 5m 4m 3mﬁ
P

M-Diagram (BDS under loads)

B.D.S. under unit horizontal
redundant load at F.

m-Diagram
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AFL

AFL

AFR

AFR

Because of symmetry, Moments and hence

2P[048 _, 048x5 5x5°
— x5+ +

strain energy is computed for half frame.
Portion Origin | Limits M m
AB A 0-5 | PX Cosb =X0.6 PX 0.8 X
BC B 0-5 | P(3+0.8X) 4 +0.6X
CG C 0-25|P@7+X)-PX=7P 7
5 5 25
(0.6 PX)(0.8X) P(3+0.8X)(4+0.6X 49 P
2] o ax +2 | & E)I( )dX+2deX
() o] o]
2p - 5 5 25
Er L1048 X2 dX +] (0.48 X*+5X+12)dX +] 49 dX
-0 0 0
2P [10.48X%|° 10.48 X°| 5X? X 28
T _‘ 3 0+‘ A +12xL+|49xL

+12><5+49><2.5}

El | 3 3 >
57EO|_P (deflection of point F due to loads)

22 25 5 25
£ [ (0.8X)%dX + =] (16 + 0.36X2 + 4.8X) dX + = | 49dX
Bl Bl el

2 UO.G4X3 ® ‘ 0.36X°  4.8X*|° 2.5}
= | |/ + |16X+ ———+ —— | +|49X|

El 3 1o 3 2 |, |

2 [0.64x5° 0.36 ;. 48x5 }
EI[ 3 t16x5+ T3 x B+ o+ 49x 25
608.33 H = AFL

EIl 7 TAFR

_570P

608.32

So H =0.937P
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NOTE :— Compatibility equation is
AFL - AFRxH =0
AFL = AFR xH
_ AFL
~ AFR
We take compression on outer side & tension on inner side +ve in case of M and m-diagram.
EXAMPLE NO. 4 ;- Determine the horizontal thrust provided that EI = Constt for the following
loaded segmental arch.:

SOLUTION:

3m 4m 5m 4m 3

Taking horizontal reaction at F as redundant. ZMa=0
Rf.19=P.12+P.7+4.P, So

Rf=1.211 P
and therefore Ra is,
Ra=2P-1.211P
[Ra = +0.789 P |

P P
X l

&
P 3m 4m m 4m 3

T M-Diagram T
0.789 P 1211 P
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C D
7L
3m
B E A
4am
A% <—F %
3m 4m 5m 4m 3m
m-diagram (Unit redundant at F)
Portion | Origin Limits M m
AB A 0-5 | 0.789 PX Cosb+PX Sind 1xXCos9
=0.4734 PX + 0.8 PX =0.8X
=1.2734 PX
BC B 0-5 | 0.789 P(3 + XCos6,) 1(4 + X Sin®,)
+P(4 + XSin@;) - PX Sind; | =4+0.6X
=0.6312 PX+6.367 P
CD C 0—-5 | 0.789P (7+X)+Px7—-Px3—PX +7
=—0.211 PX +9.523 P
DE E 0-5 | 1.211 P(3+X Cos6,) 1(4 + X Sin®,)
=3.633 P +0.9688 PX =4+ 0.6X
EF F 0-5 [ 1.211 PX Cos 6=10.7266 PX | X Sin 6 = 0.8X

5 5
AFL = % [I (1.2734 PX)(0.8 X)dX + [ (0.6312 PX + 6.367 P)
0o 0o

Determine Sines and Cosines of 6 and 0.

5
(4 +0.6X) dX + [ (- 0.211 PX + 9.523 P)(7)dX
[o]

5 5
+] (3.633 P + 0.9688 PX)(4 + 0.6X) + | (0.7266PX (0.8X) dX]
o] o]

PI: 5
=T [f 1.01872X2 dX + | (2.5248X + 0.37872X? + 25.468 + 3.8202 X) dX
0 0

5

5

+] (- 1.477X + 66.661) dX + | (14.532 + 2.1798X
[0] o]

5
+3.8752X + 0.58128X?) dX + J 0.58128X dX
]

5
P
= g7/ (1.97872X? + 11.50428X + 106.661) dX
o]

3

2 5

AFL = Lt 1.97972L + 11.50428£+ 106.661X

El

3

2

]

Simplifying we get.
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P 5° 52
= 7| 1.97872 x5 + 1150428 x % + 106.661 x 5

759.56 P

AFL = El

5 5
AFR = % [I (0.8X)%dX + | (16+0.36X%+ 4.8X) dX
o] o]

5 5 5
+[ 49 dX + [ (16+0.36X%+4.8X) dX + | 0.64 X2 dx]
[o] [o] ]

1 ]0.64%° X3 X? X a8x?  064X° |°
_EI‘ 3 +16X+0.363+4.82+49X+16X+0.363+ 2 + 3 .
1 [0.64 0.36 x5° 4.8 x5°
=5 [ e X B 16x 5+ + T 449 x5
0.36 4.8 0.64 T
+16 x5+ 3 x 5%+ TX52+ Tx53] Simplifying
608.33 - . . . .
AFR = B Compatibility equation remains the same. Putting values of integrals, we have
AFL
Ho= AFR
_ 759.56 P 608.33
- El El
H =1.2486 P | Now all reactions are shown.
TO.789P T]_.lep
ANALYZED SEGMENTAL ARCH
Check : >Mc =0

0.789P x 7 —-0.2486 Px 7—-Px3+Px5+1.2486 P x7-1211Px12=0
0=0 OK



INTRODUCTION TO TWO-HINGED ARCHES 169

3.6. ANALYSIS OF TWO HINGED CIRCULAR ARCHES :-

The circular arches are infact a portion of the circle and are commonly used in bridge construction.
From the knowledge of determinate circular arches, it is known that the maximum thrust and the vertical
reactions occur at the springings. Therefore, logically there should be a greater moment of inertia near the
springings rather than that near the mid—span of the arch. The approach is called the secant variation of
inertia and is most economical. However, to establish the basic principles, we will first of all consider
arches with constant EI. The following points are normally required to be calculated in the analysis.

(1) Horizontal thrust at the springings.

2) B.M. & the normal S.F. at any section of the arch.
Usually, the span and the central rise is given and we have to determine;
() the radius of the arch;
(i) the equation of centre line of the circular arch.
Two possible analysis are performed.
(D) Algebraic integration.

2 Numerical integration.

After solving some problems, it will be amply demonstrated that algebraic integration is very
laborious and time consuming for most of the cases. Therefore, more emphasis will be placed on numerical
integration which is not as exact but gives sufficiently reliable results. Some researches have shown that if
arch is divided in sixteen portions, the results obtained are sufficiently accurate. In general, the accuracy
increases with the increase or more in number of sub—divisions of the arch.

We will be considering two triangles.
1- AADO

2 - AEFO

By considering A ADO

OB? = OD? + BD?
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R? = (R-yc)* + (L /2)*

R? = R?—2Ryc + yc? + L¥4

0 =yc(yc—-2R)+L%4

or yc(yc—2R)=—L%4
—yc(yc—2R)=L%4

L2
yc (2R —-yc) =7 @)

By considering A EFO

OF? = OE* + EF?

R* =(R-yc+y)’+X’
RP-X? =(R-yc+y)’

R-yc+y= 4/ R =X

Ly = VR-X*- R-yo)| 2)
The detailed derivation of this equation can be found in some other Chapter of this book.
In this case, S= R (2 6 ) where 6 isin radiains. S is the total length along centre line of the arch.

= ITI;ZIZ% as before obtained By eliminating El as we are considering El = Constt

EXAMPLE NO. 5:-

A two— hinged circular arch carries a concentrated force of 50 KN at the centre. The span & the

rise of the arch are 60m & 10m respectively. Find the horizontal thrust at the abutments.

SOLUTION :- The arch span is divided in ten equal segments and ordinates are considered at the centre of
each segment.
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L : .
R = 8_yc + % , Where R = Redious, yc = Central rise and L = Span of arch.
_ (607 10
T 8x10 2
R =50m
. 30 . .
Sina = 50 " 0.6 . Now compute angle o is radians.
a = 36.87 , We know nrad = 180°
180° = mrad
o = T
1° = 180 rad
o — T ;
So 36.87° = 180 36.87 radians
36.87° = 0.6435rad = a
o = 0.6435rad

S =R (2 a)=50 (2 x 0.6435) , Where S is length of arch along its centre-line
For circular arches. X is varied from centre to abutments.

[ Myds
H = 2
Jy*ds
where M = Simple span ( S.S) B.M. in the arch due to applied loads only.
Mbc = Mac =25 (30— X) intwo portions at a distance X from mid span.

OE = RCosH



172 THEORY OF INDETERMINATE STRUCTURES

OD =R-yc =50-10=40m
y = OE-OD [Since OC=0D + CD =50 and CD =10 = Yc]
y = RCos6 —-40
and ds = Rd6
X = RSin6

Evaluation of Numerator :—
Mx =25 (30 — X), ds=Rd6, y=RCoso - 40

[Myds =2][25 (30 - R SinB)] [R Cos6—40] [Rd6], By putting X, y and ds from above. Also put
0o
value of o which is in radians.
0.6435

=50R] (30 -R Sin6)(R Cosb — 40) do, we know, 2Sin6 Cos0 = Sin 20.
]

0.6435
=50RJ  (30R Cosd Cosd — R?Sind Cos® — 1200 + 40R Sin@) do
[0]

0.6435
— 1200 6 — 40R Cos6 Put limits now

0

R?> Co0s20

=50R ‘ 30R Sin9+7. 2

2500 50?
=50 x 50| 30x50x0.6+ 2 % 0.28-1200x0.6435-40x50x0.8 -1 x1+ 40 x 50 x1
=+ 194500
| Myds =194.5 x 10°
Evaluation of Denominator :—
We know Cos?0 = % (1 + Cos26)

and  Sin%0 = % (1 — Cos26)
0.6435
Iy’ds = 2]  (RCos6 — 40)? (Rd6)
[o]

0.6435
2R (R*Cos’6 — 80R Cosb + 1600) d6
o]

0.6435 2

2R [7 (1 + Cos26) —80 R Cos 0 + 1600} de Integrate
]

0.6435
Put limits now

2

2 -
2R ‘%(@+M)—8ORSM9+16006

0



INTRODUCTION TO TWO-HINGED ARCHES 173

502 0.96
= 2x50 [T (0.6435 + T) —80x50x0.6+ 1600 x 0.6435}
= 3397.5
Jy’ds = +3.3975 x 10°
o 1945x 10°
~3.3975 x 10°
H =57.2 KN

EXAMPLE NO.5: BY NUMERICAL INTEGRATION :—

The values of X, y and M are determined at the mid ordinates of the segments. The basic
philosophy is that if we consider a very small arc length that would be regarded as a straight line and
therefore we tend to average out these values.

y = VR =X* - (R-y0)
or y =+/502-X2- (50-10)
or y =4/50°—X* — (40) 1) See segments of Example 5 about 4 page before.

For section (1)

X, = 27, from (1),  y; = A[50° - 27% — (40) = 2.08 m

For section (2)
X, = 21 from (1), y, = 4/50% — 21% — (40) = 5.738 m and so on.

M=25(30-X)=(750-25X) 0<X<30 asbefore

Now do numerical integration in a tabular form as under.

Section. X y. M My Y
1 27 2.0 75 156.00 4.33
2 21 5.380 225 1210.50 28.94
3 15 7.69 375 3883.75 59.14
4 9 9.18 525 4819.50 84.27
5 3 9.91 675 6689.25 98.21
6 3 9.91 675 6689.25 98.21
7 9 9.18 525 4819.50 84.27
8 15 7.69 375 2883.75 59.14
9 21 5.380 225 1210.50 28.94
10 27 2.08 75 156.00 4.33
231518 2.549.78
S =64.35m
64.35
and ds = 10
ds = 6.435m
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_ [Myds _ X Myds
T Iyds T Y yds
31518 x 6.435

= 54978 x 6.435 ( Note:- ds cancels out )

H =57.33 KN

A result similar to that already obtained from algebraic solution

3.7. ARCHES WITH SECANT VARIATION OF INERTIA :—
If 1o is the second moment of area of arch rib at the crown: Then secant variation of inertia means.

| = losec. a and

ds Cos o =dX
ds
dy
dx

Or ds = dX Seca

des

H =
Iyi

If it is built of the same material, then E would cancel out:

J~des
|
H = Put I=1, sec a
Iyzﬁ
|

J~ My dX Sec o

J loSeca

J‘XZdX Sec o
lo Sec a
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If we utilize the above expression for horizontal thrust, it may be kept in mind that integration can
now take place in the Cartesian coordinate system instead of the polar coordinate system.

3.8. BY SECANT VARIATION USING ALGEBRAIC INTEGRATION :—
EXAMPLE NO. 6: Analyze the arch in Example No. 5:

Weknow, y =+ R*=X? —(R-yc)
y =1/50°-X* -40

Mac = Mbc = 25(30-X) 0<X<30

30
[MydX =21 25 (30 - X)[y/ 507 = X? —40]dX
]

30 30 30 30
50[30] A[507—X? .dX -] 1200dX -] ~[507=X? . XdX+40] XdX]
[0] o] [0] o]

30 30 30 30
1500 [ 4/ 507 = X2 dX — 1200 x 50 | dX —50] /507 — XZ XdX + 2000 | XdX
0 0 (o] [0}

Put X = 50Sin0=Rsind

dX = 50 Cos6 do

At X=0 0=0
At X =30 06=0.6435

Now Evaluate integrals
Substitutions

Cos?0 = 1+ 00;29

0 Sin%

2nn — X, =2 2
[Cos?0 = >+ 2
3

[Cos?0 Sinodo = —%
by letting X = Cos6

dX = —Sin 0do

0.6435

30
[MydX =1500]  ~/50% (1 - Sin%) (50 Cos0de ) — 60000 | X |
] [o]

502 _ x2 3/2 30 2 130
+ 25 ‘ﬁ—)_ + 2000 ‘ X
32|, 2 |,

0.6435
+
- 1500 x 502] & 20329 d0 — 6 x 10° (30)

0



176 THEORY OF INDETERMINATE STRUCTURES

+ 2—0 [(50% - 30%)* - (30%) + 1000 (30°)]

0.6435

Sin26 — 180 x 10" — 1016666.666 + 90 x 10*

2

=187.5x 10* |0 +

0

Sin(2 x 0.6435)
[ MydX =187.5 x 10* [0.6435 SN XZO 6435) | _ 1916666.666

=2106561.918 — 1916666.666

[ MydX = 189895.252

30
[y2dx =2 (507 — X2 +40? - 80 /507 — X? ) dX
]

30
=2 (4100 — X? - 80 /507 — X?) dX
o]

Substitutions:
X = 50Sin6
dX 50 Cos0do
1-Sin’® = Cos’0

30 30 0.6435

=8200] dx-2] X?dX-160] /50> Cos?0 do
(o] (o]

(o]
30 3130 2 0.6435
=8200 |X| -2 X? ——160;50 [ (1+Cos26)do
(o] (o]
2 - 0.6435
= 8200 (30) % (30%) — 160; S0 1 4 S|r1226

]

2 .
Sin(2 x 0.6435)
228000 - M[O.e a5 SN2 X 06435

228000 — 224699.938
[y?dX =3300.062

b o[ MydX
~ [yAdX

~189895.252
~ 3300.062

H =57.543 KN



INTRODUCTION TO TWO-HINGED ARCHES 177

EXAMPLE NO. 7:- A circular arch carries a uniformly distributed load on its left half, calculate the
horizontal thrust.
; 10KN/m
CCIITTTITT]
c=10m

A B
A'\ D60m ﬁ

0

SOLUTION :— Determine Vertical Support reactions as usual and write moment expressions due to
applied loads only without considering horizontal thrust.

5/ 10KN/m

E X
%ﬁ yc510m B
A |\ D |

L4 75KN

om

225KN

From diagram, X =R Sin6
Mac =225 (30 — R SinB) — 5 (30 — R Sin 0)?, in other words. Mac = Va (30 — X ) —w X?/2
where X = R sin0

and Mbc =75 (30 — R Sin6)
OD =0C-CD=50-10=40m
y =OE-0OD =R Coso - 40

[ Myds

SO H = fyzds
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Evaluation of Numerator.

0.6435
[Myds =]  [225(30 - R Sin®) - 5(30 — R Sind)’] [R Cos6 — 40] (RdO)
[0]

0.6435
+] [75(30 — R SinB)] [R Cos6 — 40 ] [Rd6 ]. This consists of two integrals.
0o

Evaluate First Integral

0.6435
=I,=R|  [6750 — 225 R Sin® — 4500 — 5 R*Sin’ + 300 R Sin6] [R Cos 0 — 40]
[o]

0.6435
I, =R/ [2250 +75 R Sind — 5 R*Sin0][R Cos 6 — 40] do
0

0.6435

=R] [2250 R Cos 0 + 75 R2 Sin 0 Cos0 -5 R*Sin?0 Cos0
[0}

— 90000 — 3000 R Sin 6 + 200 R?Sin?0 ] de

0.6435
=R] [2250 R Cos 6 + 75 R* Sin 6 Cos 6 — 5 R’Sin’0 Cos 6
0

Let X = Sin6
dX = cosO do
3 -3
So /Sin%0 Cos® do = [X*dX = X? = S'g 0

— 90000 — 3000 R Sind + 200 R? (%)] a6

) 75 _, Cos? R®Sin®
=R|2250R5m9—7R2 029—5 3'”9

—90000 6

200 Sin2 9 %64
+3000 R Cos0 +7R2(e— 5 e) |
(o]

0.216
3

=50 [2250><50><O.6—%X2500X0.28—5><503X

200 0.96
—90000 x 0.6435 + 3000 x50 x 0.8 + 5 X 50° (0.6435 _T)

75
+TX2500X1_3000X50X1]
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50 [ 67500 — 13125 — 45000 — 57915 + 120000 + 160875

— 120000 + 46875 — 150000 ]

50 (9210)
460.5 x 10°

Iy

Now Evaluate
0.6435

2nd Integral = 1, =R | (2250 — 75 R Sin 6)(R Cos 6 — 40) (d6® ) multiply two expressions.
0o

0.6435
I, =R/ 2250 R Cos 6 — 75 R? Sin 6 Cos 6 — 90000 + 3000 R Sin 6) dO Integrate now.
0]

75 ,Cos2 064
=R | 2250R Sin 6 + 2> R*=%2% 90000 6 - 3000R Coso |
0

75
=50 (2250 x 50 x 0.6 + 72X 2500 x 0.28 — 90000 x 0.6435

—3000><50><0.8—%><2500x1+3000><50><1)

l, =291.75 x 10°
Add these two integrals (I; and 1,) of [Myds.

[Myds =1,+1,
= 460.5 x 10° + 291.75 x 10
or  [Myds =752.25x 10°

Now Evaluate
0.6435

[y’ds =2] (RCosb—40)*(Rd6)

0.6435 2
1+Cos%
=2R[  (R%Cos’ + 1600 - 80 R Cos6)de ; We know that Cos20 = ="
(0]
0.6435 52

=2R] = (1+Cos20) + 1600 — 80 R Cosd do
o]

R2 2 ) 0.6435
=2R | 7(e+s|n79)+16009—80R5m9|
0

507 0.96
=2 x50 [7 (0.6435+T)+1600 x 0.6435 — 80 x 50 x 0.6], So | y*ds=3.3975x10°
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[ Myds
H = 2
[ y?ds
g o 15225 10°
T 3.3975 x 10°

H=221.42 KN

EXAMPLE NO. 8: Analyze the same problem by numerical Integration.
Write moment expression for segments in portions AC and BC due to applied loading only for a simple
span.
For segments 1 — 5, Mac = 225 (30 — X) — 5 (30 — X)? as before but in Cartesian co-ordinate system.
For segments 6 — 10, Mbc = 75 (30 — X)

gllOKN/m
C

2RO OMN @)

@ 10)
A B : H H H H H H
A D B
< R=50m
0

Note: X is measured for mid span and y is corresponding rise. Now attempt in a tabular form.

Section X y M My Y
1. 27 2.08 630 1310.4 4.33
2 21 5.38 1620 8715.6 28.94
3 15 7.69 2250 17302.5 59.14
4 9 9.18 2520 23133.6 84.27
5 3 9.91 2430 24081.3 98.21
6 3 9.91 2025 20067.75 98.21
7 9 9.18 1575 14458.5 84.27
8 15 7.69 1125 8651.25 59.14
9 21 5.38 675 3624.75 28.94

10 27 2.08 225 468 4.33
2121813.65 | >549.78

S=RQa)
=50 x 2 x 0.6435
S =64.35m
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64.35 S
o) ds = 10 - 6.435m , (Because S has been divided in Ten Segments)

H = [ Myds
~ [yAds

_ 2 Myds
T Y yAds

~121813.65 x 6.435
~ 549.78 x 6.435

( Note: ds cancels out )

H =221.57 KN

Same answer as obtained by algebraic integration.

EXAMPLE NO. 9: Analyze the previous arch for by assuming secant variation of inertia.
Integrate along the x — axis by considering arch to be a beam.
Mac = 225 (30 — X) — 5 (30 — X)? 0<X<30

Mbc =75 (30 — X) 0<X<30
y = 1/50% - X* - 40

30
[MydX = [ [225 (30 — X) — 5 (30 — X)?] [\/50? — X? — 40] dX

30
+[ [75 (30 — X)] [\/502 — X? - 40] dX , By taking y expression common, we have
o]

30
[ MydX = [6750 — 225X — 5 (900 — 60X + X?) +2250 — 75X] [\[50% — X° — 40)] dX
o]

30
=] (- 5X? + 4500)[/50% — X? — 40] dX X terms cancel out
[o]

Let X =50 sin@, then dX = 50 cosd d6, So+/(50% — X*) = 50 Cos#. Putting these we
have.

0
=] (4500 — 12500 sin®0 ) (50 cos® — 40 ) (50 cos6) do
0o

Note : In solving the above expression , the following trignometrical relationships are used.
1. Sin*0 =1-cos’® and [ cos’0 = 6/2 + sin 20/4

2. Jcos® = sind — sin®0/3

3. Jcos'® = 36/8 + sin26/4 + sin46/32
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By using the above formulas and solving the integral, we get the value as follows.

[MydX =730607.23 . Now evaluate Jy?dX.
30

[y?dx =2 [/(50% = X?) — 40]* dX. By evaluating on similar lines as stated above; we have.
]

=3322.0

[ MydX
H = 2
[y?dX
_ 730607.23
- 33220

H =220.0 KN

The same may be solved by numerical integration
3.9. TWO HINGED PARABOLIC ARCHES

yc
A B

S L >
Equation of the centre line of a parabolic arch with either abutment as origin is

y =CX(L-X) > (1)

At X:% y=yc Putting
L L
ye=Cx75 (L—z)
L /L
yc-C.2 2)
C.L?
ye="3
4yc
C=7T

Putting the value of ‘C’ in equation (1), we have.

y:4—|_>£EX(L—X)

y:i%:zl(L—X),ratedfor 0<X<L
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d 4yc
and gy =2 (L-2X) 0<X<L
_ [ MydXx
So H = Iyde

In parabolic arches, origin for X is usually their supports.

EXAMPLE NO. 10:— A two-hinged parabolic arch with secant variation of inertia is subjected to the
loads at 3rd points as shown in the diagram. Determine the horizontal thrust at abutments & plot the B.M.D.

Verify your answer by numerical integration.

SOLUTION:—

D
40K'\ﬂ|\<_Xﬁ‘ 60m T40KN

It is a symmetrically loaded arch. So moment expression on simple span in portions AC and CD may be
found and corresponding integrals may be evaluated and multiplied by 2.

Mac = 40 X 0<X<20

Mcd = 40 X —40 (X — 20) = 800 20<X <30

y = i%czl (L-X) , Putvalue of yc and L for simplification purpose.

410X eh
607
or y =0.011 X (60 — X) = 0.011 x 60 X — 0.011 X?

20
[ MydX =2] (40 X)(0.011 x 60 X — 0.011 X?)dX
[0]

30
+2 [ 800(0.66 X — 0.011X?) dX
20

Simplifying
20 30
=2] (26.4X%-044X3)dX +2] (528X —8.8X?)dX
o] o]

_) 26.4X° 0.44 X’
- 3 7 4

20 ‘ 528 X> 8.8 %3
+2 -
0 2 3 20
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=2 (22'4 x20° —%x 204) + 2(5—58x 302—%x 303—5—§8x 20° +%x 203)
= 105600 + 152533.33
= 258133.33

[ MydX =258.133 x 10° - Now evaluate | y?dX.

60
[y?dX =] (0.011 x 60 X — 0.011 X?)?dX
o]

60
=] [(0.66)> X2+ (0.011)% X*— 2 x 0.66 x 0.011 X°]dX
[o]

60
=] (0.4356 X%+ 1.21 x 10 X* - 0.01452 X°) dX
[0]

_ 04356 X°  1.21x 10" X° 0.01452 X*| *

3 T 5 4 .
_04356 5 121x10* o 001452
E 5 4
= 3136.32

[y?dX =3.136 x10°

H - [ MydX
~ [yAdx

_ 258.133 x 10°
3.136 x 10°

H=82.3 KN

M =Mo-Hy,y=0.001 X(60-X), at X=20, y=Vg
yc =0.011 x20(60-20)=8.8m=1y¢

Mc =40 x 20 — 82.3 x 8.8 = 75.76 KN-m

Mp = (40 x 30 — 40 x 10) — 82.3 x 10 =- 23 KN

Mg =40 x 20 — 82.3 x 8.8 =75.76 KN
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Now BMD can be plotted.

40KN 40KN
< 20m
C D N
10m 8.8
A 8.8m -em B
VAN AN
40KNT T 40KN
823

linear arch

arablic (2nd degree)

Note:— The length of the segment should be even multiple of span. More than 5 or 6 segments will give

slightly improved answer.

3.10. EDDY’S THEOREM:- The difference between the linear arch and the actual arch is the BMD at that

point.

EXAMPLE NO. 11:- Analyze the following loaded two hinged arch by numerical integration method.

20m

40kN

A/ﬁ

C

40kN

E20mE
E

AL

40KN

|

Mac =40 X

Mcd =40 X — 40(X — 20) = 800

Meb =40 X — 40(X — 20) — 40(X — 40) = 2400 — 40X

and

y =0.011 x (60 — X) = 0.66X — 0.011 X?

0<X<20
20< X <40
40<X <60

( As before ) solving in a
tabular forces.
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Section X y M My Y
1 5 3.025 200 605 9.15
2 15 7.425 600 4455 55.13
3 25 9.625 800 7700 92.64
4 35 9.625 800 7700 92.64
5 45 7.425 600 4455 55.13
6 55 3.025 200 605 9.15
225520 2.313.84

L:60m,dX:60

5 " 10 m
4 - ZMydx
T YyhdX
_ 25520 x 10
T 313.84x 10
H=281.31 KN

Almost similar result was obtained by algebraic integration earlier.

EXAMPLE NO. 12:- A two-hinged parabolic arch with secant variation of inertia is subjected to a
uniformly distributed load on its left half. Determine the horizontal thrust at abutments and plot the
B.M.D. Verify your answer by numerical integration.

SOLUTION :-
g]lOKN/m

C

yc=10m

A B
AN AN
225KNT<— L=60m —;r75KN

Mac = 225X — 5 X? 0<X<30
Mbc = 75X 0<X<30

4yc X
y = K

(L-X)

4.10. X
T(L—X)

= 0.011 X (60 — X)
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d
y =0.66 X — 0.011 X? and % = 0.66 - 0.022X = Tang

30 30
[MydX =] (225X — 5 X?) (0.66 X — 0.011 X?) dX + [ 75 X (0.66 X — 0.011 X?) dX
[0] [0]

30 30
=] (1485 X?—2.475 X° - 3.3 X* +0.055 X*) dX + | (49.5 X2 — 0.825 X°) dX
[o] [o]

30

_ ‘148.5 X® 2475X* 3.3X* 0.055X°
= - _

. 3°+ ‘49.5 x® 0.825 X*
4 4 5 |, 3

4

(]

[148.5 30?2475 x 30 3.3x30" 0.055 x 305} . [49.5 x 30°  0.825 x 304}

3 X 4~ 4 *T s 3 4

712800.0174

[ Mydx =712.8 x 10°

60
[y?dX = [ (0.66 X — 0.011 X?)? dX
]

60
= [ [(0.66) X2+ (0.011)> X*— 2. 0.66 . 0.011 X%] dX
o]

3 5 4,60
= (0.66)Zl + (0.011)2&— 2.0.66.0.011%-
3 5 41,
=3.136 x 107
Y o 128 10°
~ 3.136 10°
| H=227.30 KN |

EXAMPLE NO. 13:- Now Analyze the previous example. BY NUMERICAL INTEGRATION :-

glOKN

G € 4

AL 2
225KN1|\ 60m T?SKN
Mac = 225X — 5 X2 0<X<30
Mcb = 225X — 300 (X — 15) 30 < X <60

y = 0.66 X —0.011 X? (same as before). Attempt in a tabular form.
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Section X y M My Y
1 5 3.025 1000 3025 9.15
2 15 7.425 2250 16706.25 55.13
3 25 9.625 2500 24062.5 92.64
4 35 9.625 1875 18046.875 92.64
5 45 7.425 1125 8353.125 55.13
6 55 3.05 375 1134.375 9.15
2.71328.125 2.313.84

7132812510
= 731384 .10

[ H=227.28 KN |

WE GET THE SAME ANSWER AS WAS OBTAINED BY ALGEBRAIC INTEGRATION.
yis = 0.66 X 15— 0.011 (15)2 = 2.425 m

Va5 = 7.425m
;I 10KN/m
C
A 7.425m [ 10m 7.4 B
AN AN
225K|\'{‘ 60m 1 75KN
225 50
+ 125
Mo-diagram
2273
1687.7 1687.7
- Hy-diagram
2273 2250
1687.7
1125 M-diagram

|<— 29.99m —|
Point of contraflexure. Write a generalized Mx expression and set that to zero.
Mx = 225X — 5X? — 227.30 + [0.011 X (60 — X)] = 0
225X — 5X? — 150.02X + 2.50X* = 0
—25X2+7498X=0
—25X+7498 =0

X=29.99 m

Insert this value back in Mx expression to find M max in the arch.
EXAMPLE NO. 14:- Analyze the following arch by algebraic and numerical integration. Consider :

A. the arch to be parabolic and then circular.
B. moment of inertia constant and then with secant variation.
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2 KN/m

(TITITTTTIT] KN

Generally arches have been used by the engineers and architects dating back to old roman buildings,
Mughal and Muslim architecture. Main applications are in bridges, churches, mosques and other buildings.
Arch behaviour is dependent upon stiffness of supports, commonly called abutments or springings so that
horizontal reaction develops.

SOLUTION :—
A PARABOLIC ARCH AND ALGEBRAIC INTEGRATION

2KN/m
LITITTITTT]

> X

70x52.5 . 5x20

A

= 53.93
70 70
A 53.93KN AMN21.07KN
Determine simple span bending moments.
Mac  =53.93 X - X? 0<X<35
Mcd  =53.93X — 70(X — 17.5) 35< X <50

= 53.93X — 70X + 1225
= —16.07X + 1225

Mdb  =53.93X — 70(X-17.5) -5 (X-50) 0<X<70
= 53.93X — 70X + 1225 — 5X + 250

= —21.07X + 1475
_4YceX

Y z (L-X)
4.6.X
= 702 ( 70 — X)
=4.898.10°X (70-X)
Y =0.343X — 4.898 . 10~ X?

35
[MydX =[ (53.93X — X?) (0.343X —4.898 x 107> X?) dX
[o]
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50
+] (-16.07X + 1225) (0.343X — 4.898 x 10 *?) dX
35

70

+] (=21.07X + 1475 ) (0.343X —4.898 x 10 X? ) dX Multiply the expressions
50

35
=] (18.498X2 - 0.264X° - 0.343X°+ 4.898 x 107% X*) dX
[0]

50
+[ (=5.512X% + 0.079X3 + 420.175X — 6X2 ) dX
35

70

+] (-7.227X%+ 0.103X° + 505.925X — 7.225X? ) dX re-arranging we get
50

35
= [ (4.898 x 107 X* - 0.607X° + 18.498%? ) dX
]

50
+] (0.079%% - 11.512 X2 + 420.175 X) dX
35

70
+[ (0.103X° — 14.452X? + 505.925X) dX
50

5 4 3135 4 3 2150
= |4.898 x 10'3£ —0.607 X + 18.498£ +10.079 X _ 11.512 us +420.175 X
5 4 31, 4 3 2 |35
x4 x3 2170
+10.103 5~ —14.452 — +505.925—-| . Insert limits and simplify
4 3 2 |5
=88097.835 + 46520.7188 + 14251.3336
[ MydX =148869.8874 . Now calculate Jy?dX

70
[y?dX =1 (0.343X — 4.898 x 107% X? )2 dX
[0]

70
=] (0.118X%+2.399 x 107° X* - 3.360 x 107% X°) dX
[o]

0.118X° X5 x4
[yAdX = 3 *+2.399x 10'53— 3.360 x 10'37

= 1386.932
[ MydX
H = 2
fydx
_148869.8874
~  1386.932

(o]

| H=107.34 KN |
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B. SOLUTION OF SAME PARABOLIC ARCH BY NUMERICAL INTEGRATION:-

We know Mac =53.93X — X? 0<X<35
Mcd =53.93X — 70 (X — 17.5) 35< X <50
Mdb =53.93X — 70 (X — 17.5) -5 (X — 50) 50 < X < 70

y =0.343X - 4.898.1073X? . Solve in a tabular form.
SECTION X Y M MY Y2
1 35 114 176,51  201.22 1.30
2 105 3.06  456.02 1395.42 9.36
3 175 450  637.53 2868.89 20.27
4 245 546  721.04 3936.88 29.35
5 315 594 70655 4196.91 35.34
6 385 594  606.31 3601.48 35.34
7 455 546  493.82 2696.26 29.85
8 525 450  368.83 1659.74 20.27
9 59.5 3.06 22134  677.29 9.36
10 665 1.14 73.85 84.18 1.30
32131827 Y 192.24
[ MydX
H = 2
[ y?dx
21318.27 x 7
T 19224 x7

H =110.89 KN Accuracy can be increased by increasing the number of
segments. Now BMD is drawn.

2Kn/m 5kN
s [

C
110.98KNA/$EIWD 110.98KN
)N [—7om AN <
706.55
153.93KN ., 014 1 2LO7TKN
8.83 M, -Diagram
0 o xR
499.00 676.74 499 0o
Hy-Diagram
0 0
7065 068
637.53 ‘/676.74

499.00
368. M-Diagram
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C. CONSIDERING IT TO BE A CIRCULAR ARCH WITH ALGEBRAIC INTEGRATION

2KN/m 5KN
JaVa¥a SVaVaVaVatala)
X ’_9 X ZOme}
D
OITI ke
A Y 70M B
D
53.93KN 4 A21.07KN
R
R=105.08m
0
_ Ly
R = 8yc 2
70° 6

R=8x6*y

R =105.08 m

y = {RZ=X* — (h—yc) and L = tang = —2——

dX A[105.082 — X2

y = 1/105.08°— X? — (105.08-6)

y = 4/105.08% - X* — 99.08 . Establishment expressions.
Mac =53.93 (35— X) — (35 — X)? 0<X<35
Mbd =21.07 (35 — X) 0<X<20
Mdc =21.07 (35-X) -5 (15 - X) 20 <X <35

35
[Mydx =] [53.93 (35-X) - (35— X)Z] [ 105.08° — X* —99.08] dx
]

20
+] 21,07 (35-X) [\/105.082 - X2 - 99.08] dX
o]

+f 5[ 21.07(35—-X) -5 (15— X)] [ 105.08” - X* —99.08] dX
o]

IMydX =1, + 1, + I3
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(Where 1, I, and Iy are 1%, 2" and 3" integrals of above expression respectively). These are

evaluated separately to avoid lengthy simultaneous evaluation of above | My dX expression.
35

Evaluation of Iy = | [53.93 x 35 — 53.93X — (357 + X* —70X)] [ 105.08” - X* — 99.08]dx
o]

35

= [ (662.55 + 16.07X — X?) [\/105.082 -X* - 99.08] dX
0

35
] [662.55 105.08% — X* +16.07 X 1/105.08° — X

0

— X? 1[105.087 - X’ - 65645.454 — 1592.216X + 99.08X2] dX

35 16.07 35
662.55 | 4/105.08” - X* dX ——— | A[105.08% — X? (—2X)dX .
[0] o]

Taking constants out.
35

1 35
EJ X 4[105.082 — X2 (= 2X)dX — 65645.454 | dX —1592.216
] ]

35 35
[ XdX +99.08 ] X2dX
[0} (0]

Put X = 105.08 Sin6

and dX =105.08 Cos6 do
At X =0 , 0=0
At X =35 | 0 = 0.3396 radians = 19.4°

0.3396
662.55]  /105.08% — 105.08 x Sin? 6(105.08)Cos0d6
[o]

*1 ‘ N (105.082 - xz)s’z
2 32

0

=
I

16.07 (105.082—XZ)3/2
2 312

35 35 2 \2\312
B 1(105'%32 xz) | dx}
0 o]

35 35

35 ‘XZ
2

3
— 65645.454 | X | —1592.216 + 99.08‘XT
0o

0o 0

0.3396 16.07
= 662.55x 105.08”  Cos® 0.d6 — = ~[(105.08” - 35”)*”

0
35

~ (105.08%)*?] + % [* (105.087 - 357 )** —[ (105.087 — X* )** dX]
o]
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1592.216 35
~65645.454 (35 -0) - =5 (35%) +99.08 (TR)

0.3396 (1+COSZ 0

7315748.83 [ T) do +1005048.922 + 11347550.55
0

1 0.3396
- §I 105.08" Cos* 0d6 — 1856804.857
0

0.3396 1
-3 (105.08)*

7315748.83 Sin?
2 0+

0.3396
[ Cos?6 (1- Sin?0)d6 + 10495794.62

0

7315748.83 Sin (2 x 0.3396)
I, =T[0.3396+ n o }10495794.62

1 e (1 + Cos 29) (l—Cos 2 e)
-3 x (105.08) £ > > do

Sin 20 0.3396
+

2

1 105.08)4

= 12886893.66 — 3% ( >

]

1 0.3396
+15 * (105.08)" | (1 - Cos®20) do
0]

1 Sin (2 x 0.3396
= 12886893.66 — 5 x (105.8)" [0.3396 420 - }]

1 . 0'3396[ (1 +Cos 4 eﬂ
+75 % (105.08) £ 1- > de

1 0.3396 1
12886893.66 — 13283049.35 + 75 x (105.08)" | (— =Cos 4 e) do
0

272
Sin 49 | 33%

0-"4

—396155.69 + 2—14 (105.08)*

(o]

1 Sin (4 x 0.3396) %%
—396155.69+ﬁ(105.08)4[0.3396— = }

(o]

—396155.69 + 483712.6275
87556.9375
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20

I, =] 21.07(35-X) [\/105.082 - X - 99.08] dX
o]

20
= [ (737.45-21.07X) [ 105.08% — X2 - 99.08] dX
]

20
= [737.45 105.08” — X* - 73066.546
o]

—21.07X 4/(105.08)? — X* + 2087.6162 ] dx
Put X =105.08 Sin 0

dX =105.08 Cos 6 do

At X=0 6=0
At X =20 6 =0.1915
0.1915 21

07 %
737.45]  (105.08) Cos’6 do +==— | A[105.08% — X?
] [o]

I

26 20
(—2X) dX — 73066.546 | dX + 2087.616 ] XdX
o] o]

20

8.143 x 10°[ > > 32

0

0.1915 2 271312
1+Cos 2 21.07 |[(105.08) - X
(a2 | 5]

0

26 ‘

X 2,20
—73066.546 | X | +2087.616 |
[o]

(o]

8.143 x 10°
2

e+Sln 20

0'1915+ 21.07
2

3 [{(105.08)? - (20)*}*? - (105.08)%%2 |

2087.616
— 73066.546 (20) + = (400)

6 -
. (2x0.1915)
S A0 [0.1916 # SEX0LI) | _ 436772215

=58247.385
35

I; = [ (662.45-16.07X) [ 105.08° — X? — 99.08] dX
20

>
|

35
= | [662.45~/105.08% — X? — 65635.546
20
—16.07 x 1/105.087 — X + 1592.216X] dX
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0.3396 35

662.45]  105.082 Cos’6 d6 — 65635.546 | X |
0.1915 20

2135 35
+1592.216 ‘A 16.07 105.08% — X? (—
0.3396
+
= 662.45 x 105.08° [ (%) d0 — 65635.546 x 15
0.1915

1592 216 %

2 N2 3\312
1592216 o 202)+1e*207‘(105.08 X2)

312

20

0.3396

—65635.546 x 15
0.1915

662.45 x 105.08°
2

+Sin26
2

1592 216 16 07

=== (352 20%) + —5—[(105.08% — 35% )*¥? — (105.08% — 20%)*?]

662.45 x 105.08°
2

[0.3396 01015 + SN Q2 ><20.3396) _Sin ><20.1915)}

1592 216
— 65635.546 x 15 + 222210 (357_p7) 4+ 1807 1105 087 _357 32 _ (105,08 - 207

8838.028 . Adding values of three integrals. We have

MydX = 87556.9375 + 58247.385 + 8838.028
= 154642.3505 . Now calculate Jy?dX
35 2
fy?dXx = 2] [ 105.082—X2—99.08] dX
[o]

35
2] [105.082 - X?+99.08% - 2X99.08+/105.08” — x2] dX
0

35
2[ (20858.653 — X? — 198.16/105.08% — X? ) dX
[o]

35 2 0.3396
2 x 20858.653 | X | - 3| X3 |%®-198.16x2]  105.08% Cos?6 do
[0] [0]

2 033% 14 (5052
2 x 20858.653 (35) — 3 (35°) — 198.16 x 2 x 105.08” | ( 205 e) "
0

198.16 x 2 x 105.08° . Sin 260
2 2

0.3396

_g +353_

=2 x 20858.653 x 35 3

0
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Iy?d X = 1229.761
H - [MydX
~ [ydX

_ 154642.3505
=~ T 1239.761

[H = 125.75 KN]|

D. CIRCULAR ARCH BY NUMERICAL INTEGRATION:- As you have seen algebraic integration is
lengthy, laborious and time consuming. so it is better to store such question by numerical integration.

5KN
—
5) (6) ("
@ T 249 1o
70m
53.93KN 21.07KN
0 0
0
y = ~/105.087— X% -99.08

M. = 53.93(35-X) - (35-X) 20< X <35

My = 21.07 (35— X) 0<X<20

Mg = 21.07 (35— X) -5 (15 - X) 29 <X <35

Attempting in a tabular form
Section X Y M MY Y?

1 315 1.167 176.505 205.981 1.362

2 245 3.104 456.015 1415.47 9.635

3 17.5 0.533 637.525 2889.901 20.548

4 10.5 5.474 721.035 3946.446 29.965

5 35 5.942 760.545 4198.29 35.307

6 35 5.942 606.205 3602.07 35.307

7 10.5 5.474 493.715 2702.596 29.965

8 17.5 4,533 368.725 1671.430 20.548

9 245 3.104 221.235 686.713 9.635
10 315 1.167 73.745 86.060 1.362

>21405.157 | >193.634
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S =105.08 (2 x 0.3396) = 71.370 m

71.37
ds = 10 =7.137m
H = XMyds  21405.157 x 7.137

T Yy2ds 193.634 x 7.137

H = 110.54 KN , Accuracy can be increased by taking more segments.

For secant variation of inertia follow the same procedures established already in this
Chapter.

Space for taking Notes:
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