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Introduction

The Standard Penetration Test (SPT) is one of the oldest and most frequently used
tests for geotechnical exploration. It is useful in a wide variety of soils, from weak clays and
loose sands to very hard clays and dense sands. It provides a measure of the resistance
of the soil to penetration through the blow count “N,” and a disturbed but representative soil
sample that can be used for classification and index tests.

The SPT has been used widely for preliminary exploration, and many useful correlations
have been established between the blow count, N, and soil properties, foundation
performance, and susceptibility to liquefaction. In recent years some engineers have
developed various “corrections” for measured N-values to account for the effects of using
different types of hammers, the effects of overburden pressure, and various other factors of
less importance. While these corrections are desirable, their use has led to confusion
regarding which correlations use corrected N-values and which use uncorrected N-values.
The main purpose of this report is to remove that confusion.

The report presents what are considered to be the most useful and reliable correlations
between SPT N-values and soil strength, soil compressibility, foundation bearing capacity,
foundation settlement, and liquefaction potential. In each case it is made clear what
corrections should be applied to the measured N-values.

The report also contains correlations between the Standard Penetration Test and the
Becker Penetration Test, which is useful for soils that contain large gravel particles, where
the SPT is unreliable.



SPT Equipment and Procedures

The Standard Penetration Test, as defined by the American Society for Testing and
Materials (ASTM D 1586), involves driving a standard split-spoon sampling tube (2-inch
O.D. and 1 3/8-inch I.D.) 18 inches into the ground at the bottom of a borehole with a 140
Ib. hammer falling 30 inches. The borehole is advanced to the desired testing depth, the
drilling tools are removed, the sampler is attached to a series of drill rods, and the entire
assembly is lowered to the bottom of the borehole. The hammer is positioned over the top
of the drill rods and blows are applied at the rate of 30 to 40 blows per minute.

Three types of hammers can be used in the SPT. The donut hammer, shown in Figure
1, provides approximately 45% of the maximum free-fall energy to the drill stem. The safety
hammer, shown in Figure 2, is the most commonly used hammer for the SPT. It provides
about 60% of the maximum free-fall energy. Figure 3 shows the automatic trip hammer.
The automatic hammer mechanism raises and lowers the hammer at a preset blowcount
frequency. Because the hammer falls in a nearly “free-fall’” mode, the automatic trip
hammer provides 95% to 100% of the maximum free-fall energy to the drill stem.

The most common method of raising and lowering the donut or safety hammer is the
rope and cathead method (also called the rope and pulley method). A rope wrapped
around a rotating pulley (a cathead) is used to lift the hammer. The drill rods are marked in
three 6-inch increments. As the sampler is driven, the number of hammer blows required
to drive the sampler each 6-inch increment is recorded. The blow counts for the last two 6-
inch increments added together are the standard penetration resistance or N-value. Upon
completion of driving, the sampler is withdrawn from the borehole. The split-spoon sampler
is opened and the soil sample is removed and logged. The SPT drilling and sampling
configuration is shown in Figure 4, and the dimensions of the standard split-spoon sampler
are shown in Figure 5.
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Figure 4. SPT drilling and sampling configuration (from Mobile Drilling Co., 19886)
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ASTM Specifications for the Standard Penetration Test

The “standard” procedure for the Standard Penetration Test is set by ASTM D 1586.
This specification, titled “Standard Test Method for Penetration Test and Split-Barrel
Sampling of Soils” can be found in its entirety in Appendix A. As stated in Paragraph 1 of
the specification, its scope is to “describe the procedure, generally known as the Standard
Penetration Test (SPT), for driving a split-barrel sampler to obtain a representative soil
sample and a measure of the resistance of the soil to penetration of the sampler.” ASTM
D 1586 provides information on drilling procedures and equipment, the sampler, the
hammer, the anvil, the drop system, borehole sizes, and sampling and test procedure. The
ASTM requirements regarding these items are summarized in Table 1.



Table 1. Summary of the ASTM Specification for the Standard Penetration Test (D 1586)

Item

Standard

Drilling Procedure

Any drilling equipment that provides a suitably clean and stable hole
before sampler insertion and ensures that the penetration test is
performed in essentially undisturbed soil.

Drill Rods Flush joint steel, stiffness 3 stiffness of "A" rod. For a list of drill rod
designations, see Appendix B.

Sampler 1.5 inch (inner diameter) split-barrel sampler. See Figure 5 for
dimensions. Use driving shoe of hardened steel. Use of liners
and/or retainer baskets is permitted, but must be noted.

Hammer Solid rigid metallic mass of 140 + 2 Ib.

Hammer Drop System

Rope-cathead, trip, semi-automatic, or automatic hammer drop
systems may be used. Use a hammer guide that permits free-fall.
The hammer shall be dropped 30 £ 1 inches.

Borehole

2.2 t0 6.5 inches in diameter.

Anvil

Shall make steel on steel contact with hammer.

Sampling and Test
Procedure

Remove excess cuttings from borehole. Lower drill rods and
sampler into hole (do not drop). Apply a seating blow. Mark three
successive 6-inch increments on the drill rods. Drive the sampler
with blows from the hammer and count the number of blows applied
in each 6-inch increment until one of the following occurs:

A total of 50 blows has been applied during any one of the three
6-inch increments.

A total of 100 blows has been applied.

No observed advance of the sampler has occurred during
applications of 10 successive blows.

The sampler has advanced 18 inches.

Record the number of blows for each 6 inch increment. The "N"
value is the sum of the second and third 6 inches of penetration.
Upon completion of sampling, remove sampler from borehole.
Record percent recovery or length of the sample. Describe the
recovered soil samples with respect to composition, color,
stratification, and condition. Place representative portions of each
sample in moisture-proof containers and label appropriately.




Standard Penetration Test Procedures Recommended by Various
Authorities - All Are Allowable by ASTM

Because the ASTM specifications for the SPT are not fully comprehensive, and are
subject to interpretation to some degree, various authorities have developed
recommendations concerning SPT procedures and equipment. These recommendations
range from a full set of instructions for the SPT to merely a few comments that address
drilling methods, drill rods, borehole size and stabilization, the sampler, blow count rate,
hammer configuration, energy corrections and test procedure. The following
recommendations are allowable by ASTM D 1586, and may be used for conducting the
SPT for geotechnical investigation. This section contains guidance from authorities in from
the US and other countries in which the SPT is routinely used.

This section presents recommendations and guidance for performing the SPT. All of
the recommendations are allowable within the ASTM standard specification. This section
is organized by author.

Seed et al. (1984) developed a relatively complete procedure for the SPT for use in

liquefaction correlations. The following is a summary of the equipment and procedures
they recommend:

- Borehole: 4 to 5-inch diameter rotary borehole with bentonite drilling mud for borehole
stability.

- Drill Bit: Upward deflection of drilling mud (tricone of baffled drag bit).
- Sampler:

0O.D. =2.00 inches

I.D. = 1.38 inches - constant (i.e. no room for liners in barrel).
- Drill rods:

A or AW for depths < 50 feet

N or NW for greater depths
- Blow count rate: of 30 to 40 blows per minute.

The energy delivered to sampler should be 2520 in-lbs (60% of theoretical maximum)
per blow. This is the energy delivered by the safety hammer. If a hammer other than a
safety hammer is used, the field blow count (Nseiq) Should be corrected to the appropriate
energy which is 60% of the theoretical energy. Energy correction factors will be discussed
further in Section 5. The following correction for the various hammer types are
recommended:
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Neo = NieldCe

where

Neo = N-value corrected to 60% of the maximum theoretical energy delivered by
140 Ibs. falling 30 inches

Ntielq = SPT N-value for measured in the field
Ce = energy ratio correction factor (see Table 2)

Table 2. Energy Correction Factors proposed by Seed et al. (1984)

Hammer Correction Factor, Ce
Automatic 1.3
Safety 1.0
Donut 0.75

The SPT Working Party (Thorburn et al., 1989) also made recommendations for
performing the SPT. The International Reference Test Procedure (IRTP) was developed by
the Working Party with the intent to create one standard specification to be followed by all
countries using the SPT. The following recommendations are from the IRTP report:

- Carefully clean out the borehole to the test elevation using equipment that will not
disturb the soil to be tested.

- Do not use hollow stem augers for tests below groundwater.
- Withdraw drilling tools slowly to prevent suction effects that can loosen the soil.

- If casing is used, do not drive the casing below the elevation where the test is to be
performed.

- The N-value is zero if the sampler and drill rods penetrate the soil more than 18 inches
under their weight.

- The rate of application of hammer blows shall:
1) Not be excessive such that there is the possibility of not achieving the standard
drop.

2) Not prevent equilibrium conditions from occurring between blows. Use a maximum
blow count rate of 30 blows per minute.

Kovacs (1979, 1980, 1994), Kovacs and Salomone (1982), Kovacs et al. (1977),
and Kovacs et al. (1981) have done extensive research on the SPT, especially with
energy ratios and energy transfer. The following recommendations come from this work:

11



- Use 2 turns of rope around the cathead (Kovacs and Salomone, 1982). Kovacs
(1980) claims that one of the most significant variables that affects SPT results is the
number of turns of rope around the cathead. When operators use more than 2 turns of
rope, frictional resistance causes the N-values obtained to be erroneously high. The
hammer no longer is able to fall freely. The velocity of the hammer decreases as more
turns of rope are used. As the velocity decreases, so does the kinetic energy and
overall efficiency of the hammer (Kovacs and Salomone, 1982). The reduction in
hammer velocity is more pronounced as the number of turns increases from 2 to 3 than
as it increases from 1 to 2. In order to obtain the best results in terms of the energy
ratio and the ability of the operator to achieve a 30-inch drop height, Kovacs et al.
(1981) recommend using 2 turns of rope around the cathead. The definition of a turn of
rope as noted by Kovacs (1980) is seen in Figure 6. The actual number of turns is
defined by the total angle of rope contact with the cathead divided by 360. As shown in
Figure 6, the number of turns is different depending on the direction of cathead rotation
and operator orientation. As the number of turns increases beyond two, the energy
ratio for a 30-inch fall decreases sharply, as can be seen in Figure 7.

- It may become desirable to specify only one permissible direction of cathead rotation
for future standard of SPT (Kovacs, 1980).

- Do not use hollow stem augers below the groundwater table (Kovacs, 1994).

- Use a hammer that delivers 60% of its maximum rated free-fall energy, i.e. a safety
hammer (Kovacs, 1994).

- Adjust the fall height of automatic hammers to give 60% energy delivered to the drill
stem (Kovacs, 1994).

- Perform SPT in each identifiable layer or every 3 feet (Kovacs et al., 1981).

- Record the penetration resistance as zero if the sampler and drill rods advance under
their own weight (Kovacs et al., 1981).

- Do not subject the sampler spoon to more than 50 blows. The penetration resistance
should be expressed as a ratio of the number of blows to the distance penetrated in
inches if more than 50 blows are required (Kovacs et al., 1981).

- Using a trip monkey may be desirable in order to get consistent, reproducible results
(Kovacs, 1979).

- Eliminate donut and pin-guided hammers because of the low energy they deliver to the
drill stem (Kovacs, 1994).

12



Section A-d4

(a) CCW rotation (1.81 turn shown)

Section 3.3

(b) CW rotation (2.189 turns shown)

Figure 6. Definitions of the number of turns of rope and the angle « for (a) CCW
rotation and (b) CW rotation of the cathead (from Kovacs, 1980)
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Figure 7. Effect of energy ratio (on impact) on the number of turns of rope around the

cathead (after Kovacs, 1980)
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- Do not use liners (Kovacs, 1994).

In order to aid in the interpretation of SPT results, Kovacs et al. (1977) recommend
that the following information be made a standard part of a boring log:

Number of turns of rope around cathead

Rope age

Cathead speed

Number of sheaves

Mast dimensions

Type of guide

Type of drop weight (included on most boring logs)

Details of striker plate (with or without wood cushion, material)

ONoGRWNE

Decourt (1990) makes the following recommendations for equipment and procedures:

- Use size A drill rods weighing 3.4 to 4.01b / ft.

- Use a borehole diameter of 2.5 to 4 inches.

- Use a hammer that does NOT have at its base a hard wood cushion block.
- Use casing (not drilling mud).

When the 18 inches of penetration of the sampler cannot be achieved, Decourt
recommends that the following procedure be used to find the extrapolated penetration
resistance (Next):

Next IS either 4N; or 2.4N,, whichever is less
where

N; = blows required for the first 6 inches of penetration

N, = blows required for the second 6 inches of penetration

15



Skempton (1986) has developed these recommendations for the SPT:

- Use the wash boring technique or rotary drilling with a tricone drill bit and mud flush.
Water or mud in the borehole should be maintained up to groundwater level.

- Use boreholes not less than 2.5 inches or greater than 6 inches in diameter

(preferably not more than 4 inches), with the casing (if used) not advanced below the
bottom of the borehole.

Fletcher (1965) makes the following procedural recommendations for the SPT:

- The drilling fluid or water level inside the borehole should be maintained at or above
groundwater level to prevent soil from blowing or heaving into the borehole.

- Use heavy mud if an artesian condition is encountered.

- If the borehole diameter is more than 4 inches, a 2.5-inch casing should be inserted.

16



Factors and Variables That Affect SPT Results

Many factors and variables affect the validity and usefulness of SPT results. As a result
of these factors, measured penetration resistance may be too high or too low. A measured
penetration resistance that is too high leads to unconservative estimates of soil properties
and bearing capacity. A measured penetration resistance that is too low leads to
overconservative results. Because the ASTM specification allows leeway concerning
execution of the test, results obtained from a specific test might not be “wrong”, but may
require adjustment to be useful for geotechnical design. Many authors have recognized
factors that affect SPT results, as summarized in the following section. Some authors have
provided numerical estimates of the change in N-values related to specific factors. Others
have indicated an “increase” or “decrease” in the penetration resistance due to these
factors. These factors and variables are summarized in this section.

Factors that can affect SPT results include improper drilling methods, improper
borehole stabilization, improper testing procedure, use of non-standard or faulty
equipment, and incorrect recording of results. This section provides both descriptive and
numerical estimates of the effects that these factors have on the measured penetration
resistance.

NAVFAC (1982) discusses a number of factors that can affect measured penetration
resistance. The factors listed in Table 3 are results of faulty equipment and non-standard
procedures.
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Table 3. Factors which may affect measured penetration resistance (From NAVFAC,

1982)

Procedure

Comments

Inadequate cleaning of the
borehole

Not seating the sampler
spoon on the undisturbed
material

Driving of the sample spoon
above the bottom of the
casing

Failure to maintain sufficient
hydrostatic head in boring

Attitude of operators

Overdrive sampler

Sampler plugged by gravel

Plugged casing

Overwashing ahead of
casing

Drilling method

SPT is only partially made in undisturbed soil. Sludge may
be trapped in the sampler and compressed as the

sampler is driven, increasing the blow count. This may
also prevent sample recovery.

Incorrect N-values obtained.

N-values are increased in sands and reduced in cohesive
soils.

The water level in the borehole must be at least equal to
the piezometric level in the sand , otherwise the sand at
the bottom of the borehole may be transformed into a
loose state.

Blow counts for the same soil using the same rig can vary,
depending on who is operating the rig, and perhaps the
mood of the operator and time of drilling.

Higher blow counts usually result from overdriven sampler.

Higher blow counts result when gravel plugs sampler,
resistance of loose sand could be highly overestimated.

High N-values may be recorded for loose sand when
sampling below groundwater table. Hydrostatic pressure
causes sand to

rise and plug casing.

Low blow count may result for dense sand since sand is
loosened by overwashing.

Drilling technique (e.g., cased holes vs. mud stabilized
holes) may result in different N-values for the same soil.
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Table 3 continued

Procedure

Comments

Free fall of the drive weight
IS not attained

Not using correct weight
Weight does not strike the
drive cap concentrically
Not using a guide rod

Not using a good tip on the
sampling spoon

Use of drill rods heavier than
standard

Not recording blow counts
and penetration accurately

Incorrect drilling procedures

Using drill holes that are too
large

Inadequate supervision

Improper logging of soils

Using too large a pump

Using more than 1.5 turns of rope around the drum and/or
using wire cable will restrict the fall of the drive weight.

Driller frequently supplies drive hammers with weights
varying from the standard by as much as 10 Ibs.

Impact energy is reduced, increasing N-values.

Incorrect N-value obtained.

If the tip is damaged and reduces the opening or
increases the end area the N-value can be increased.

With heavier rods more energy is absorbed by the rods
causing an increase in the blow count.

Incorrect N-values obtained.

The SPT was originally developed from wash boring
techniques. Drilling procedures which seriously disturb the
soil will affect the N-value, e.g. drilling with cable tool
equipment.

Holes greater than 4 in. in diameter are not
recommended. Use of larger diameters may result in
decreases in the blow count.

Frequently a sampler will be impeded by gravel or cobbles
causing a sudden increase in blow count; this s not
recognized by an inexperienced observer. Accurate
recording of drilling, sampling, and depth is always
required.

Not describing the sample correctly.

Too high a pump capacity will loosen the soil at the base
of the hole causing a decrease in blow count.
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Fletcher (1965) has recognized that many variables and factors can affect SPT results.
These include:

- Inadequate cleaning of the borehole.

- failure to maintain sufficient hydrostatic head in the boring.

- variations from an exact 30-inch drop of the drive weight.

- use of drill rods heavier than 1-inch extra heavy pipe or A rods.
- extreme length of drill rods (over 175 feet).

- interference with free fall of the drive weight from any cause.

- use of 140-Ib weight without hardwood cushion, block, or guide rod.
- use of sliding weight that can strike the drive cap eccentrically.
- deformed tip on sample spoon.

- excessive driving of sample spoon before the blow count.

- failure to seat sample spoon on undisturbed material.

- driving of sample spoon above bottom of casing.

- carelessness in counting the blows and measuring penetration.

Fletcher comments that the SPT can be used to depths of about 140 feet. At depths
greater than 200 feet, the SPT results are too high and unreliable. This is due mainly to
energy loss through the drill rods. Farrar (1998) recommends a correction of 1 percent
reduction in energy for every 10 ft of rod length in excess of 100 ft. With this correction it
may be possible to perform SPT at depths greater than 140 ft.

The SPT may be misleading in very fine sands and inorganic silts above the water
table. If water is used as a drilling fluid in these soils, the soil mass to be tested and
sampled may be softened or loosened, and this can lead to erroneously low blow counts.
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Broms and Flodin (1988) have recognized the following as variables that affect SPT
results:

- The dimensions of the sampler can vary from country to country. In North America, the
sampler has an inside diameter that is 0.118 inches (3 mm) larger than the diameter
of the cutting shoe. In Asia and Europe, these diameters are the same. The
difference in these diameters can affect SPT N-values by 10 to 30%.

- In the U.K. and Australia, a solid cone can be used in gravel or stony soils, instead of
an open split barrel sampler. Penetration resistances obtained with a solid cone will
be much different than those obtained with a hollow spilt-spoon sampler.

- The use of drilling mud instead of water can increase the penetration resistance
significantly.

- The penetration resistance is not significantly affected by the size and weight of the
drilling rods used.

- When hollow stem augers are used, the penetration resistance can be affected by
loosened ground in the bottom of the borehole.

- Aging effects (in sands) can lead to an overestimation of relative density from the SPT
method.
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Table 4. Estimates of the change in N-values due to some common factors (from Broms

and Flodin, 1988)

Cause

Basic

Detailed

Estimated % by Which
Cause Can Change N

Effective Stresses at
bottom of borehole (sands)

Use drilling mud versus casing
and water

+100%

Use hollow-stem auger versus | £100%
casing and water
Small-diameter hole (3in.) 50%
versus large diameter (18 in.)
Dynamic energy reaching 2 to 3 turn rope-cathead +100%
sampler (all soils) versus free drop
Large versus small anvil +50%
Length of rods
Less than 10 feet +50%
30 to 80 feet 0%
more than 100 feet +10%
Variations in height drop +10%
A-rods versus NW-rods +10%
Sampler design Larger ID for liners, -10% (sands)
but no liners -30% (insensitive clays)
Penetration interval No to 12 in. iINStead of N 1o 18 in. -15% (sands)
-30% (insensitive clays)
N1z t0 24 in. iINStead of Ng 10 18in. | +15 % (sands)

+30% (insensitive clays)

+ = measured value of N is too high
- = measured value of N is too low
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Tokimatsu (1988) as compiled the following factors that influence SPT N-values in

sand:

Table 5. Estimates of the change in N-values due to various factors (from Tokimatsu,

1988)
Cause
| Basic Detailed Estimated % change
in N
Effective Stresses at Casing and water versus -50%
bottom of borehole drilling mud
Allow head imbalance +100%
Large versus small borehole -35%
Dynamic energy reaching Rope-cathead versus free +100%
sampler drop
Large versus small anvil +50%
Short versus long rod +30%
Sampler design Large ID for liners, but no +10-20%
liners vs. standard
Blow count rate Slow versus standard +10%
Penetration resistance 0-12 in. versus 6-18 in. -15%
count
12-24 in. versus 6-18 in. +15%

+ = measured value of N is too high
- = measured value of N is too low

Tokimatsu (1988) also identified the following limitations of the SPT:

1. It does not provide continuous information of soil resistance with depth.

layers of weak material may be missed.
2. Its apparatus and procedure have not been completely standardized.

23

Thin



Decourt (1990) presents the following factors that cause variations in SPT N-values:

Table 6. Changes in N-values due to faulty equipment and non-standard procedures
(from Decourt, 1990)

Factor Effect on N-value
Variation in drop height from exactly 30 inches either
Failure of the driller to completely release the tension on the | increase
rope
Use of wire line rather than manila rope increase
Insufficient lubrication of the pulley increase
Attitude of operators either
Use of incorrect weight either
Not striking the anvil concentrically increase
Not using a guide rod increase
Incorrectly reading or recording blowcounts either
Failure to maintain sufficient hydraulic head decrease
Borehole diameter greater than 6 inches decrease
Using a boring pump of too high capacity increase
Using drilling mud instead of casing (in sands) increase
Using a deformed sampler increase
Driving the sampler above the bottom of the casing (in increase
sands)
Sampler plugged with gravel increase
Penetration interval:
0-12 inches instead of 6-18 inches decrease
12-24 inches instead of 6-18 inches increase
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Kulhawy and Trautmann (1996) summarized the effects of the following SPT testing

variables:

Table 7. Changes in N-values due to various factors (from Kulhawy and Trautmann,

1996)
SPT Variable
Group ltem Relative Effect
on Test Results
Equipment Non-standard sampler moderate
Deformed or damaged moderate
sampler
Rod diameter/weight minor
Rod length minor
Deformed drill rods minor
Hammer type moderate to significant
Hammer drop system significant
Hammer weight minor

Anvil size
Drill rig type

moderate to significant
minor

Procedural / Operator

Borehole size

Method of maintaining hole
Borehole cleaning
Insufficient hydrostatic head
Seating of sampler
Hammer drop method
Error in counting blows

moderate

minor to significant
moderate to significant
moderate to significant
moderate to significant
moderate to significant
minor

25




Corrections to Measured Blow Counts

In order for field measured blow counts to be used in geotechnical engineering
applications, they should be adjusted for the effects of hammer energy, overburden
pressure, and, in some cases, various other factors that influence the results. Measured
blow counts can be normalized to Ngo or N3 60 Where Ng is the blow count corrected to 60%
of the theoretical free-fall hammer energy and N g, is the blow count corrected to 1 tsf of
effective overburden pressure and 60% of the theoretical free-fall hammer energy. The
most general equations for Ngp and N g0 are as follows:

where

Neo = NfieldCeCrCsCsCaCgrCc

N1 60 = NrieldCNCeCRrCCsCaCgrCc

Neo = blow count corrected to 60% of the theoretical free-fall hammer energy

Ni60o = blow count corrected to 1 tsf of overburden pressure and 60% of
theoretical free-fall hammer energy

Nrielg = blow count measured in the field

Cn = overburden correction factor. Note that the subscript of "N" is used here
because the overburden correction was one of the original correction factors. It
is often used by itself to correct N, therefore it is denoted Cy.

Ce = energy correction factor

Cr =rod length correction factor

Cs = borehole diameter correction factor
Cs = liner correction factor

Ca = anvil correction factor

Cgr = blow count frequency correction factor

Cc = hammer cushion correction factor

For most geotechnical applications, the last six correction factors list above are not
used. In some cases, they may be used to provide better data. In most cases, Ny and
N; 60 are defined as:

Neo = NieldCe

N160 = NrieldCeCn

26



Overburden Correction Factor - Cy

In order to compare blow counts measured at different depths, measured blow counts
should be adjusted to a standard overburden pressure of 1 tsf. The penetration resistance

of cohesionless materials (sands) depends heavily on the confining pressure.

For the

same sand, an SPT performed at a shallow depth will have a lower blow count than for an
SPT performed at a great depth. By multiplying Nseqg by Cy, the effects of confining
pressure are compensated. Recommended values of Gy are summarized in Table 8.

These equations are plotted together in Figure 8.

Figure 9 shows values of Cy

recommended by Seed et al. (1985) which are based on effective overburden pressure

and relative density (D).

Table 8. Overburden correction factors (Cy) (after Carter and Bentley, 1991)

sands

Units of
Reference Correction Factor (Cy) overburden
pressure
i (sv)
|
Peck and Bazaraa (1969) ! 4 s, '£15
- f1+2s,"
N_':'—A' s,'>15 «
$3.25+05s’ v
20 2
Peck et al. (1974) C, = 0.77log,, = kg/cm® or tsf
Tokimatsu and Yoshimi 17 kg/cm?” or tsf
(1983) NT07+s)
Liao and Whitman (1986) 1 kg/cm?” or tsf
CN = ;
Skempton (1986) I 2 For fine sands of medium
' 1+s + relative density
| \
C, = : 3 - For dense, coarse sands kg/cm? or tsf
i2+s, when normally consolidated
i 17
{ 0.7+s, For overconsolidated fine
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Effective Overburden Pressure, ksf

Peck and Bazaraa (1969)
Peck et al. (1974)
Tokimatsu and Yoshimi (1983)
Liao and Whitman (1986)

Skempton (1986) - fine sands

of medium relative density
Skempton (1986) - Dense, coarse
normally consolidated sands
Skempton (1986) - Overconsol-
idated fine sands

| | | |
0.4 0.6 0.8 1.0 1.2 1.4

Overburden Correction Factor, C
Figure 8. Overburden correction factors
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Effective Overburden Pressure (ksf)

10

- D, =40to0 60%

D, = 60 to 80%

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
CN

Figure 9. Chart for values of CN (after Seed et al., 1985)
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Energy Correction Factor -Cg

One of the most important corrections to be made to Nse(q iS for the energy delivered to
the drill rods. The energy delivered from the hammer depends on the way the hammer is
lifted and released, and on the design of the hammer. Theoretically, a 140 Ib. hammer
falling 30 inches should produce 4200 in-lbs of energy. Due to losses (friction, lack of free-
fall), the actual energy delivered to the drill rods is less than 4200 in-lbs. The objective of
applying the energy correction factor is to adjust the blow count to the value that would have
been measured if a hammer imparting 60% of the theoretical energy had been used in the
test. The correction factor is defined as:

_ER

C=%0
where

Ce = hammer energy correction factor

ER = hammer system energy ratio expressed as a percentage of the theoretical
energy of a 140-lb. hammer falling 30 inches

Each type of hammer has a value of Cg, as shown in Table 9.

Table 9. Energy correction factors (Cg) (from Seed et al., 1985)

Hammer Type ER (%) Ce
Donut 45 0.75
Safety 60 1.0

Trip 100 1.67

Youd and Idriss (1997) propose a range of Cg values for each hammer due to
variations in drilling and testing equipment, as shown in Table 10.

Table 10. Ranges of energy correction factors (Cg) (from Youd and Idriss, 1997)

Hammer Type Ce
Donut 0.5t01.0
Safety 0.7t01.2
Automatic-trip Donut 0.8t01.3

Alternatively, the energy ratio may be measured directly following procedures outlined in
ASTM D 6066-96, Standard Practice for Determining Normalized Penetration
Resistance of Sands for Evaluation of Liquefaction Potential.
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Rod Length Correction Factors (Cg)

The energy delivered to the sampler is affected to some extent by the length of the drill
rod, and measured blow counts are sometimes corrected for this factor. Tables 11 and 12
summarize values of Cg recommended by Seed et al. (1985), Skempton (1986), and Youd
and Idriss (1997).

Table 11. Rod length correction factors (Cr) (after Tokimatsu, 1988)

Cr
Rod length Seed et al. (1985) Skempton (1986)
<10 feet 0.75 -
10 - 13 feet 1.0 0.75
13 - 20 feet 1.0 0.85
20 - 30 feet 1.0 0.95
> 30 feet 1.0 1.0

Youd and Idriss (1997) recommended the following rod length correction factors:

Table 12. Rod length correction factors (Cr) (after Youd and Idriss, 1997)

Rod length Cr
10-13 feet 0.75
13 - 20 feet 0.85
20 -30 feet 0.95
30 -100 feet 1.0
> 100 feet <1.0

Borehole Diameter Correction Factors (Cg)

Measured SPT N-values are sometimes corrected if they are made in boreholes larger
than 4.5 inches. When boreholes are larger than 4.5 inches, stress relaxation occurs and
measured N-values are lower than they would be for a smaller-diameter hole. This effect
can be significant in sands, but is probably negligible in cohesive soils Sanglerat and
Sanglerat, 1982). Table 13 provides values of the borehole size correction factor, Cg.

Table 13. Borehole diameter correction factors (Cg) (after Skempton, 1986)

Borehole diameter Cg
2.5to0 4.5 inches 1.0
6 inches 1.05
8 inches 1.15

31



Liner Correction Factors (Cs)

The SPT may be performed with or without sample liners. An illustration of the sample
liner configuration is shown in Figure 10. Liners are often omitted in practice and the
inside diameter of the sampling tube is thereby increased from 1-3/8 inches to 1-1/2
inches. The increase in inside diameter reduces the friction on the inside of the sampler
and reduces the measured penetration resistance of the soil. Youd and Idriss (1997) have
proposed a range of corrections due the absence of liners in Table 14.

Table 14. Liner correction factors (Cs) (after Youd and Idriss, 1997)

Sampler Configuration Cs
Standard sampler (with liners) 1.0
U.S. sampler without liners 1.1t01.3

Anvil Correction Factors (Cp)

When the hammer falls during the SPT, it strikes an anvil attached to the drill rod stem.
See Figures 1 and 2. The anvil is usually metallic and can vary in shape, size, and weight.
The amount of energy transferred to the drill rods depends on the weight of the anvil
(Tokimatsu, 1988). Table 15 provides correction factors to Nseq based on hammer type
and anvil weight.

Table 15. Anvil correction factors (C,) (after Tokimatsu, 1988)

Hammer Anvil Ca
Donut Small (4.4 Ibs) 0.85
Large (26.5 Ibs) 0.70
Safety 5.5 lbs 0.90

Note that Table 15 provides no C, = 1.0. For the safety hammer, C, = 1.0 is commonly
used.

Blow count Frequency Correction Factors (Cge) (only for sands below the water table)

The rate at which blows are applied to the drill rods can affect the measured N-value.
The correction factor Ggr accounts for pore pressure effects in sands below the water
table.  The value of Cgr is dependent on the value of N;g. Table 16 lists blow
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30 in.

—b> le——2 in.

Without liner

AN | With liner

1 3/8 in.

Figure 10. Sampler liner configuration. Note that the right sideof the sampler contains
aliner andis at a constant diameter. The left sde contains no linerand has a varying
diameter. (ater Al-Khafaji and Andersland, 1992)
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count frequency correction factors. If the frequency of hammer blows is 30 - 40 blows per
minute, use Cgr = 1.0.

Table 16. Blow count frequency correction factors (Cgg) (after Decourt, 1990)

N1 60 Frequency of hammer blows Cgr
<20 10 - 20 blows per minute 0.95
> 20 10 -20 blows per minute 1.05

Hammer Cushion Correction Factors (C¢)

Some hammers have a hard wood cushion block on the anvil striking surface. The
block absorbs energy and increases the measured N-value. These N-values should be
adjusted with the factors shown in Table 17.

Table 17. Hammer cushion correction factors (C¢) (after Decourt, 1990)

Type of hard wood cushion block Cc
none 1.0
new 0.95
used 0.90

Corrections for saturated very fine or silty sand:

When the SPT is performed in saturated very fine or silty sand, the measured N-values
need to be corrected for dynamic pore pressure effects (Meyerhof, 1956). Correction is
only necessary for measured blow counts greater than 15.

N=15+

(N'- 15)
> for N'>15

where
N' = measured blow count

N = corrected blow count
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Becker Penetration Test (BPT) Correlations with the SPT

In soils containing gravels and/or cobbles, the SPT can be unreliable, and can produce
unconservative results. BPT blow counts are regarded by some investigators as more
reliable than SPT N-values in gravelly soils Campanella and Sy, 1994). The Becker
Penetration Test (BPT) results have been correlated to equivalent SPT N-values. These
equivalent SPT blow counts have been used to predict liquefaction in gravelly soils.

The BPT consists of driving a double-walled pipe (casing) into the ground with a
double-acting diesel pile hammer. The casing can be driven open (for drilling and
sampling), or close-ended (as a large-scale penetration test used to evaluate density and
pile driveability). While the pipe is being driven, the driving resistance or blow count per
12 inches of penetration is recorded The Becker penetration resistance is defined as the
number of hammer blows required to drive the casing thorough an increment of 12 inches.
Figure 11 shows a schematic drawing of the Becker sampling operation.

BPT-SPT correlations are not always accurate and may be uncertain for three reasons:

1. The diesel hammer used in the BPT has a variable energy output. It inherently gives
lower energy in soft ground driving conditions, and higher energy in hard driving
conditions (Sy 1997).

2. Shaft friction acting on the BPT pipe during driving is significant, especially at
depths greater than 100 feet.

3. Variations in equipment and procedures used to perform the SPT cause variations
in results (Harder and Seed, 1986).

The BPT has not been standardized (Youd and Idriss, 1997) and test equipment varies.
The casings (pipes) are available in 8 or 10-foot lengths and the following sizes:

- 5.5inch O.D. with 3.3 inch 1.D. (original size)
- 6.6 inch O.D. with 4.3 inch I.D.
- 9.0 inch O.D. with 6.0 inch I.D.

Sy (1997) notes that the BPT is performed with one of two basic drill rig types:

- The older and more compact HAV180, or
- The newer and more elaborate AP1000.
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Figure 11. Schematic diagram of Becker sampling operation (from Harder 1987)
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Both of these drill rigs use an International Construction Equipment (ICE) Model 180
double-acting atomized fuel injection diesel pile hammer with a manufacturer's rated
energy of 8100 ft- Ibs. A blow rate of 90 to 95 blows per minute (at maximum stroke) is
typical (Campanella and Sy, 1994). The hammer is closed at the top and part of its energy
is developed by compression of air in the hammer cylinder (Harder and Seed, 1986).
Figure 12 illustrates the operating principle of a double-acting diesel pile hammer. By
measuring the pressure in the top chamber (the bounce chamber pressure), the driving
energy of the hammer can be estimated.

The Becker penetration resistance is strongly affected by the bounce chamber
pressure in the diesel hammer. As the energy output of the hammer changes due to
temperature, pressure, or air-fuel mixture, so does the kinetic energy at impact. Sy and
Campanella (1994) note that the kinetic energy, not the potential energy, of the ram
appears to control the resulting blow count.

The BPT suffers from the same lack of standardization as the SPT. Due to
specifications that are subject to individual interpretation, some guidance or standard
procedure is desirable. The following authorities have offered recommendations and
guidance for the BPT:

Harder and Seed (1986) recommend using AP1000 drill rigs equipped with
supercharged diesel hammers, 6.6-inch O.D. casing, and a plugged bit.

Youd and Idriss's (1997) recommendations are similar to Harder and Seed's (1986)
and include:

1. Use AP1000 drill rigs equipped with supercharged diesel hammers, and a plugged
6.6-inch O.D. casing.

2. Bounce chamber pressures should be used to adjust measured BPT blow counts to
Npc (corrected Becker blow count) to account for variations in diesel hammer
combustion efficiency.

3. The influence of casing friction is intrinsically accounted for in the Harder and Seed
(1986) BPT-SPT correlation. This correlation should not be used for depths greater
than 100 feet or for sites with thick, dense deposits overlying loose sands or
gravels.

Sy and Campanella (1994) recommend the following procedure for estimating SPT
Neo values from the BPT performed with a 6.6-inch O.D. Becker pipe:

1. Monitor BPT with a pile driving analyzer in accordance with ASTM D4945-89, which
governs high-strain dynamic testing of piles. Correct the recorded blow counts to
Nbzo USINg:

ENTHRU
Nb30 = Nb 30
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Figure 12 Operating principle of double- -acting atomized fuel injection diesel pile
hammer (from Sy and Campanella, 1983)
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where
Np3o = BPT blow count normalized to the 30% reference energy level

N, = measured Becker blow count

ENTHRU = measured maximum transferred energy expressed as a percentage
of the rated hammer energy of 8100 ft-lbs.

2. Select representative blows for CAPWAP analysis to determine the total shaft
resistance (Rs) at specific depths and estimate or interpolate between computed Rs
values for other depths.

CAPWAP is a complex numerical procedure for interpreting pile driving data.

3. With the energy-corrected BPT N,z and Rs values, estimate equivalent SPT Ny
from Figure 13.

Harder and Seed (1986) developed a BPT-SPT correlation by standardizing the BPT
blow counts to a constant combustion condition by measuring peak pressure in the bounce
chamber of the diesel hammer. Their correlation involves 2 steps:

Step 1: The field measured (uncorrected) BPT blow count, Ng is corrected to a reference
combustion condition using Figure 14.

Step 2: The corrected BPT blow count, Ngc is used to estimate the equivalent SPT Ngo
using Figure 16.

The procedure for using Figure 14 is as follows:

1. Plot the bounce chamber pressure at sea level with the uncorrected Becker blow
count, Ng..

2. From this point, follow the blow count correction curves for reduced combustion
efficiencies down to the constant combustion rating curve AA.

3. The point on curve AA is then used to obtain the corrected Becker blow count, Ngc.

Harder and Seed (1986) provide the following examples to clarify the use of Figure 14:

Example 1: An uncorrected blow count, Ns was measured as 43. It was obtained at
sea level with a bounce chamber pressure of 18 psig. Using Figure 15, the corrected
Becker blow count would be 30.

If the BPT is conducted at an elevation higher than sea level, the bounce chamber
pressure needs to be corrected. Using Table 18, the bounce chamber pressure is
corrected to sea level conditions. Example 2 clarifies the use of Table 18.
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Table 18. Elevation Corrections for Bounce Chamber Pressures (in psig) (data from
Harder and Seed, 1986)

Elevation Measured Bounce Chamber Pressure (psig)
(feet)

10 15 20 25
0 (Sea Level) 0 0 0 0
1000 0.8 0.9 1.1 1.1
2000 15 1.8 2.1 2.2
3000 2.3 2.8 3.2 3.2
4000 3.0 3.7 4.2 4.3
5000 3.8 4.6 5.3 5.4
6000 4.5 55 6.3 6.5
7000 5.3 6.4 7.4 7.6
8000 6.0 7.4 8.4 8.7
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Example 2: An uncorrected blow count, Ng of 24 was measured at an elevation of 6000
feet with a bounce chamber pressure of 12.5 psig. Using Table 18 and interpolating
between bounce chamber pressures of 10 and 15, the bounce chamber pressure
correction is 5.0 psig (corrected bounce chamber pressure = 12.5 + 5.0 = 17.5 psig).
From Figure 15, an Ng = 24 and a corrected bounce chamber pressure = 17.5 psig yields
an Ngc = 18.

Sy (1997) made the following comments about the Harder and Seed approach:

- Peak bounce chamber pressure can easily be measured in the field.

- Reference combustion line (A-A) is specific for the particular hammer used - this
approach cannot be applied to different Becker rigs or hammers (Sy and
Campanella, 1993).

- This approach does not consider soil friction on the Becker casing.

Sy (1993) used the complex CAPWAP analysis procedure to calculate the shaft
resistance (Rs) along the Becker casing. The measured R values and Np3o were then used
to find the equivalent SPT Ngo as seen in Figure 13.

While the BPT is generally used in gravelly soils, some BPT correlations with SPT have
been developed for other soil types. Table 19 provides a list of BPT-SPT correlations for
different types of soil. Figures 17-21 show the correlations listed in Table 19 in plot form.
Figure 21 is a summary of Figures 17-20 and shows all correlations on one plot. It can be
seen that the suggested relationships cover an extremely wide range.
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Table 19. Correlations between Becker and SPT blow counts (after Harder and Seed,
1986)

Casing Drill Bit Figure
Reference and Job Location Soil Type O.D. Configuration
(inches)
1. Canadian Data from Becker Drills, Inc. Files
A. Vulcan Way, Richmond, BC (R.A. Spence Ltd.) Silty & Clayey Silts 55 Closed 17
B. Lynn Creek, N. Vancouver, BC Gravelly Sands 5.5 Closed 17
C. Hunter Creek, Near Hope, BC Sands & Gravels 55 Closed 17
D. North Vancouver, BC (R. A. Spence Ltd.) Gravelly & Silty Sands 55 Closed 17
E. Powell River, BC (Ripley, Klohn, & Leonoff Ltd.) Gravelly Sands 55 Closed 17
F. New Westminster, BC (Ripley, Klohn, & Leonoff, Sands & Silts 55 Closed 17
Ltd.)
G. Minoru Blvd., Richmond, BC (R.M. Hardy & Sands & Silts 55 Closed 17
Assoc., Ltd.)
2. Sargent, Hauskins, & Beckwith (1973) (Salt River | Gravels (Dsy = 10-30 6.6 Open 18
Valley, Arizona) mm)
3. Geotechnical Consultants, Inc. (1981, 1983)
A. Santa Felicia Dam Foundation, CA Gravels (Dsg = 4-10 6.6 Open 19
mm)
B. Vern Freeman Diversion Structure, CA Sands & Gravels 6.6 Open 19
4. Jones and Christensen (1982)
A. Great Western Malting Facility, Pocatello, ID Silts and Gravels 6.6 Open 20
B. Northern Engineering & Testing, Inc. Files Sands, Gravels, 55 Open 20
Baked Shale

Foundex Explorations, Ltd. and Klohn Leonoff, Ltd. have developed the Foundex
Becker penetration test (FBPT) that uses a mud-injection system to reduce casing friction.
As bentonite mud is pumped through a series of holes (Figure 22), the side friction on the
casing is reduced. The reduction in casing friction can be measured using a pile driving
analyzer.

Sy and Lum (1997) have developed FBPT-SPT correlations for both the 6.6-inch
diameter casing (Figure 23a) and the 9.0-inch casing (Figure 23b). These correlations
eliminate the need for determining casing friction and offer a quick and approximate
method for determining SPT Ngo from FBPT Np3zo.
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Figure 22. Conventional BPT mud-injection FBPT casing configurations. All
dimensions in milimeters(after Syand Lum, 1997)
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Correlations Between SPT and Soil Properties

The SPT is widely used for estimating in situ properties of soils. It is most useful for
estimating the properties of sands, but can also be used to estimate properties of silts and
clays. This section provides the following correlations between the SPT and soil
properties:

Relative Density of Sands
Friction Angles (f ) of Sands and Silts
Undrained Shear Strength (S,) of Clay

Undrained Residual Steady State Strengths (S,) of Sands After
Liguefaction

Soil Modulus Values

These correlations are approximate and their use requires the exercise of engineering
judgment regarding the inevitable uncertainties in estimated property values.
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Relative Density of Sands

SPT blow count can be used to estimate relative density values for sands. Because
blow count depends on effective overburden pressure as well as relative density, both s,
and N should be considered in estimating D,.

Table 20 lists equations relating D, to N and s, that have been suggested by various
authorities. Their recommendations are shown in graphical form in Figures 24 through 30.

Table 21 provides descriptive estimates of relative density based on standard
penetration resistance.

Figures 31 and 32 show correlations compiled by Mitchell et al. (1978) and NAVFAC
(1982).
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Table 20. Correlations of relative density and SPT N-values

Soil Type Relative Density (D)) Parameters and Units Reference
Normally N s, = effective vertical Gibbs and Holtz (1957)
consolidated Dy=,[——— (See Note) stress in psi Figure 24
sands 1.7(10 +sy,")

Normally .0.5 N =SPT blowcount in Meyerhof (1956)
consolidated silica ® N 0 blows/foot Figure 25
sand D, = hT (See Note)

0.234s,,'+16 @

s, = effective
overburden stress in
kN/n? at depth of test

Coarse sands

.0.5
e N (0]

D, = h+
0.773s,,'+22 0

0.5
S N (0]

D, = +
80.193sv'+66g

(See Note)

fors,,'< 75 kPa

fors,,'® 75 kPa

s, = effective
overburden stress in
kN/n? at depth of test

Peck and Bazaraa
(1969)
Figure 26

Ottawa sand . . 0.5 s, = effective vertical Marcuson and
€N +10.4- 3.2(OCR) - 0.24(s,, )Y stress in psi Bieganousky (1977)
D, =86- 0.83¢ u
é 0.0045 g OCR =
(See Note) overconsolidation ratio
Normally Nso = blowcount Skempton (1986)
consolidated 0.5 corrected to 60% of
sands - 2) NGO o0 the theoretical
D, = = maximum energy
as,, '+b @
a = 0.3 (mean value)
If sand is overconsolidated, increase b by a factor C;:
1+ K b =30 (mean value)
Cs=""T—"
1+ 2Kgne
where:
K, = ratio of effective horizontal stress to vertical stress for
overconsolidated sand
Kone = ratio of effective horizontal stress to vertical stress for the
normally consolidated sand » 1- sin f
Gravelly soils _ 057 -0.14 . s,/ = effective vertical Yoshida and lkemi
Dy = 22N Sv (fine sand) stress in kPa (1988)
0.57 ,-0.14 . . :
D, =18N Sy’ (gravel fraction 25%) Figures 27-30
0.44 -0.13 .
D, = 25N Sy' (gravel fraction 50%)
D, = 25N0'463v'- 0.12 (average for all sands)

(See Note)

Note: As originally proposed, this correlation used the uncorrected SPT blowcount, N.

However,

hammers delivering 60% of the theoretical energy have been the most commonly used hammers for SPT
tests, and it seems likely that the data on which the correlation was based was obtained primarily from

tests with such hammers.

recommendation of this report that this be done.
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Figure 24. Variations of relative density with penetration resistance at
different overburden pressures (after Gibbs and Holtz, 1957)
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Figure 25. Variations of relative density with penetration resistance at
different overburden pressures (after Meyerhof, 1956)
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Figure 26. Variations of relative density with penetration resistance at
different overburden pressures (after Peck and Bazaraa, 1969)
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Figure 27. Variations of relative density with penetration resistance at
different overburden pressures (after Yoshida and Ikemi, 1988)
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Standard Penetration Resistance, Ngq (blows/foot)
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Figure 28. Variations of relative density with penetration resistance at
different overburden pressures (after Yoshida and Ikemi, 1988)
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Figure 29. Variations of relative density with penetration resistance at
different overburden pressures (after Yoshida and lkemi, 1988)
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Figure 30. Variations of relative density with penetration resistance at

different overburden pressures (after Yoshida and Ikemi, 1988)
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Table 21. Relationship among relative density, penetration resistance, dry unit weight, and angle of internal friction of
cohesionless soils (after Duncan and Buchignani, 1976)

Descriptive Relative Standard Static Cone Angle of Internal Dry Unit
Relative Density Density Penetration Resistance Friction Weight
Resistance N; f
* (see Note) * dec
% blows/foot tsf or kgf/cm® degrees KN/m®
Very Loose < 15 < 4 < 50 < 30 < 14
Loose 15-35 4-10 50 - 100 30-32 14-16
Medium Dense 35-65 10-30 100 - 150 32-35 16 - 18
Dense 65 - 85 30-50 150 - 200 35-38 18- 20
Very Dense 85-100 > 50 > 200 > 38 > 20

* N; = N -value corrected to an effective vertical overburden pressure of 1.0 tsf or 100 kPa

** Freshly deposited, normally consolidated sand

Note: As originally proposed, this correlation used the uncorrected SPT blowcount, N;. However, hammers delivering 60% of
the theoretical energy have been the most commonly used hammers for SPT tests, and it seems likely that the data on which
the correlation was based was obtained primarily from tests with such hammers. It therefore seems logical to use N; go with
this correlation, and it is the recommendation of this report that this be done.
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therefore seems logical to use Neo with this correlation, and it is the recommendation of this report that this be

done.

Figure 32. Correlations between relative density and standard penetration resistance
(from NAVFAC, 1982)
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Friction Angles (f ) of Sands and Silts

The SPT can be used to estimate the in-situ angle of internal friction (f ) for sands and
silts. In situ tests such as the SPT and cone penetration tests are commonly used to
estimate the properties of cohesionless soils due to the difficulty in obtaining undisturbed
samples.

Equations relating f to SPT N-values for sandy and granular soils have been
summarized in Table 22 and plotted together in Figure 33.

Bowles (1968) summarized empirical values for f , relative density (D,), and unit weights
of granular soils based on SPT N-values as shown in Table 23.

Terzaghi et al. (1996) suggested the relationship between N; g0 and f for fine-grained
and coarse-grained soils shown in Figure 34. Fine-grained sands are defined as sands
passing the #40 sieve and retained on the #200 sieve. Coarse-grained sands are defined
as sands passing the #4 sieve and retained on the #10 sieve.

Carter and Bentley (1991) have developed a plot of f versus N with corresponding
descriptions of relative density in Figure 35.

Relationships between the angle of internal friction and relative density for different
types of sands and gravels are shown in Figure 36 (Decourt, 1990).

Relationships between f, SPT N-values, and overburden pressure from Mitchell et al.
(1978) are shown in Figure 37.

Duncan et al. (1997) correlated values of f from UU tests on unsaturated silts and clays
from five locations in Virginia with SPT blow counts, as shown in Figure 38. Note that the
undrained strength envelopes for these soils have cohesion intercepts varying from 150 psf
to 400 psf.
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Table 22. Correlations of internal friction angle and SPT N-values (data from Hatanaka

and Uchida (1996) and Broms and Flodin (1988))

Soil Type f (degrees) Reference
Angular and well-grained | f = (12N)°° + 25 Dunham (1954) (#1)
soil particles (See Note)

Round and well-grained
or angular and uniform-
grained solil particles

f = (12N)*° + 20
(See Note)

Dunham (1954) (#2)

Round and uniform-
grained soil particles

f = (12N)°° + 15
(See Note)

Dunham (1954) (#3)

N; = N-value normalized to 1
tsf of overburden pressure
using the Liao and Whitman
(1986) equation. ltis the
recommendation of this report
to use Ny o With this
correlation..

Sandy f = (20N)*° + 15 Ohsaki et al. (1959)
(See Note)

Granular f =20+ 3.5(N)*° Muromachi et al.
(See Note) (1974)

Sandy f =(15N)*°+15£45 (N> |Japan Road
5) Association (1990)
(See Note)

Sandy f = (20N,)°° + 20 Hatanaka and

Uchida (1996)

Note: As originally proposed, these correlations used the uncorrected SPT blowcount,
N. However, hammers delivering 60% of the theoretical energy have been the most
commonly used hammers for SPT tests, and it seems likely that the data on which these
correlations were based was obtained primarily from tests with such hammers. It therefore
seems logical to use Nsp with these correlations, and it is the recommendation of this
report that this be done.
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Figure 33. Correlations between internal friction angle and penetration resistance
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Table 23. Empirical values for ¢, D,, and unit weight of granular soils based on the
standard penetration number with corrections for depth and for fine saturated sands

(from Bowles, 1968)

Deseription Very Fﬂaﬂ'| Logze | Medium | Dense | Very dense

) ) ]

Relative density D, 1] 0.15 035 0.55 0.85 1.00
Standard pesetra- | | | [

tion no. N 4 10 30 50
Approx. angie ‘ ] [

of interoal s

friction 4"t 2530 73 p-35° 35-40° 35-45"
Approx. range

of maist unit

weight, (¥) pel TO-1002

Q0115 110-130

110-140 ‘ 130-150

t After Meyerhof [3]. ¢ =25 & 0,150, with more than 5 percent fines and @ =30 + 0.1530,
with less than § percent fines. Ute larger values for granular matcrial with § percent or less fine

sand and silt.

+ 1t should be noted that excavated material or materfal dumped from 2 trisck will weigh 70 to 80 pell
Material must be quite dense and hard to weigh much over 130 pef.  Yalues of 105 to 115 pefl for
nonsaturzied soils are commaon,

Note: As originally proposed, this correlation used the uncorrected SPT blowcount, N.
However, hammers delivering 60% of the theoretical energy have been the most
commonly used hammers for SPT tests, and it seems likely that the data on which the
correlation was based was obtained primarily from tests with such hammers. It
therefore seems logical to use Ngg with this correlation, and it is the recommendation of

this report that this be done.
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Figure 34. Empirical correlation between friction angle of sands and normalized
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standard penetration blow count (after Terzaghi et al., 1996)
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Standard Penetration Blow Count, N, (blows/foot)
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Figure 35. Estimation of the angle of shearing resistance of granular soils from standard
penetration test results (Originally from Peck et al., 1974, modified by Carter and
Bentley, 1991).

72



Peak angle of internal friction, f', (degrees)
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Figure 36. Angle of internal friction as a function of relative density for different types
of sand and gravel (after Decourt, 1990)

73



Standard Penetration Blow Count, Ng (blows/foot)
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Figure 37. Method for estimating effective friction angle (f') from SPT
blow count (N) (after Mitchell et al., 1978)
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Figure 38. Variations of friction angle with N1 60 for silts and clays

(data from Duncan et al., 1997)
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Undrained Shear Strength (S,) of Clays

The SPT can be used to estimate undrained shear strengths (S,) for clays. Ladd et al.
(1977) in Robertson (1986) caution that S, values obtained from SPT N-values are of little
value unless the clay is relatively stiff and insensitive. Casagrande (1966), de Mello
(1971), Schmertmann (1971) and Mitchell et al. (1978) note that clay sensitivity may cause
lower blow counts for a given undisturbed strength due to strength loss during sampler
penetration (see Figures 42 and 43).

Suggested relationships between S, and N are shown in Tables 24, 25, and 26.

A correlation between S;, N and plasticity index for clays (Stroud, 1974) is shown in
Figure 39.

Correlations between N and S, are shown in Figure 40, and correlations between N
and g, are shown in Figures 41 and 43.
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Table 24. Approximate values of undrained shear strength for cohesive soils
based on SPT blow count N-values (from Terzaghi and Peck, 1967)

Soil Consistency SPTN S, (psf)
(See Note)
Very Soft < 2 < 250
Soft 2-4 250 - 500
Medium 4-8 500 - 1000
Stiff 8-15 1000 - 2000
Very Stiff 15-30 2000 - 4000
Hard > 30 > 4000

Table 25. Approximate undrained shear strength for cohesive soils based on SPT

blow counts (from Tschebotarioff, 1973 and Parcher and Means, 1968)

SPTN Su (kgflem®) S. (psf)
(See Note)
Ref. a Ref b. Ref a. Ref b.
<2 0.15 < 0.12 300 -
2-4 0.15-0.3 0.12-0.25 300 - 600 250 - 500
4-8 0.3-0.6 0.25-0.5 600 - 1200 500 - 1000
8-15 06-12 05-1.0 1200 - 2400 1000 - 2000
15-30 1.2 1.0-2.0 2400 2000 - 4000
> 30 > 2.25 > 2.0 > 4500 > 4000

Ref. (a) Tschebotarioff (1973)
(b) Parcher and Means (1968)

Note: As originally proposed, this correlation used the uncorrected SPT blowcount, N. However,
hammers delivering 60% of the theoretical energy have been the most commonly used hammers for
SPT tests, and it seems likely that the data on which the correlation was based was obtained
primarily from tests with such hammers. It therefore seems logical to use Ng, with this correlation,
and it is the recommendation of this report that this be done.
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Table 26 - Empirical values for g, * and consistency of cohesive soils based on the standard penetration
number (After Bowles, 1968)

Consistency Very Loose Medium Dense Very
Loose Dense

Qu, ksf 0 0.5 1.0 2.0 4.0 8.0

N, Standard ‘ ‘

Penetration 0 2 4 8 16 32

Resistance

Osat, PCf 100-120 110-130 120-140

* These values should be used as a guide only. Local cohesive samples should be tested, and the

relationship between N and the unconfined compressive strength g, established as g, = KN.

Note: As originally proposed, this correlation used the uncorrected SPT blowcount, N. However, hammers delivering 60% of the
theoretical energy have been the most commonly used hammers for SPT tests, and it seems likely that the data on which the
correlation was based was obtained primarily from tests with such hammers. It therefore seems logical to use Ng, with this
correlation, and it is the recommendation of this report that this be done.
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Figure 39. The variation of S/N with plasticity index, PI. (after Stroud, 1574)
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Undrained Residual Steady State Strengths (S;) of Sands After
Liguefaction

The SPT has been used to estimate residual steady-state strengths of soils after
liquefaction. When soils are liquefied, or sheared to very large strains under undrained
conditions, they reach a residual condition at which further shearing causes no additional
change in strength, volume, or pore pressure (Casagrande, 1936). This “steady-state”
strength is used to estimate post-liquefaction strengths and stability of soils. Figure 44
(Seed and Harder 1990) shows variations of residual undrained shear strength ;) and
equivalent clean sand SPT blow count (N1 60- cs). The residual strengths in this figure were
back-calculated from flow slides and slope failures. SPT tests were conducted at these
sites to find the corresponding penetration resistances. The equivalent clean sand SPT
blow count is calculated as follows:

N1,60-cs = N1,60 + Necorr

where
N1 60 - cs = €quivalent clean sand SPT blow count (for use in Figure 44)

N1 60 = SPT blow count normalized to 1 tsf of overburden pressure and 60% of
the maximum free-fall hammer energy

Ncorr = cOrrection factor based on fines content of the soil (see Table 27)

Note that Figure 44 indicates a wide range of residual shear strengths based on a
limited number of case histories.
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Table 27. Recommended fines correction for estimation of residual undrained
strength by Seed-Harder and Stark-Mesri Procedures (after Kramer, 1996)

Neorr (blows/foot)
Percent Fines Seed-Harder Stark-Mesri

0 0 0
10 1 2.5
15 - 4
20 --

25 2 6
30 -- 6.5
35 - 7
50 4 7
75 5 7
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Soil Modulus Values

The SPT can be used to estimate in-situ modulus values for soils. Constrained modulus
(M) and Young's modulus (E or Es) can be estimated using correlations with N-values.
Summaries of correlations between moduli and SPT N-values are found in Table 28 (Tan
et al. 1991) and plotted in Figure 46. Mitchell and Gardner (1975) warn that it is difficult to
be certain which relationship applies to a particular soil, if any. Figure 45 shows variations
of Es with N summarized by Mitchell and Gardner (1975).

Relationships between modulus of compressibility (M) and N-values for preloaded sand
and normally loaded sand or sand and gravel are shown in Figure 47 (Tan et al. 1991).

Young’s modulus (E) can be related to the constrained modulus (M) as follows:

E » 0.65M for loose sand
E » 0.85M for dense sand

A correlation between small-strain shear modulus with uncorrected N-value, from
NAVFAC (1982), is shown in Figure 48.
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Table 28. Equations for stress-strain modulus by the SPT method (after Tan et al., 1991)

Soil

Stress-Strain Modulus, Eg *
(See Note)

Normally consolidated sand

Es = SOO(NGO + 15) #1
Es = (15000 to 22000) In Ngy ~ #2

Over-consolidated sand

Es = 18000 + 750N60
Es.ocr = Esnc (OCR)*®

Gravelly sand and gravel

Es = 600(N60 + 6) N60£ 15
Es = 600(N60 + 6) + 2000 Neo >15

Clayey sand

Es = 320(N60 + 15)

Silty sand

ES = 300(N60 + 6)

* Unit of Es is in kPa (1 tsf » 100 kPa)

Note: As originally proposed, these correlations used the uncorrected SPT blowcount, N.
However, hammers delivering 60% of the theoretical energy have been the most commonly
used hammers for SPT tests, and it seems likely that the data on which these correlations
were based was obtained primarily from tests with such hammers. It therefore seems
logical to use Ngo with these correlations, and it is the recommendation of this report that

this be done.
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Figure 48. Shear modulus vs. N values at very small strains (after NAVFAC, 1982)
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Correlations Between SPT and Foundation Performance

The SPT is often used to estimate settlement and bearing capacity of shallow
foundations (mats, strips, rafts) and deep foundations (piles, drilled shafts). Both
settlement and bearing capacity can be estimated directly based on SPT penetration
resistance. This section provides correlations which can be used to estimate:

Settlement of Shallow Foundations on Sand
Settlement of Pile Groups in Sand

Bearing Capacity of Footings on Sand
Bearing Capacity of Pile Groups in Sand
Bearing Capacity of Drilled Shafts
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Settlements of Shallow Foundations on Sand

Settlement of shallow foundations on sand occurs quickly and is called immediate
settlement (r or r;). The SPT can be used to estimate immediate settlements of

foundations on sand based on modulus values estimated from SPT N-values, together with
elastic settlement theories (Tan et al., 1991).

Correlations relating settlements directly to N-values have been suggested by Bazaraa
(1967), Duncan and Buchignani (1976), Parry (1977), Burland and Burbridge (1985), and
Terzaghi et al. (1996) as shown in Table 29.
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Table 29. Correlations of settlements of footings on sand and SPT N-values

Settlement Equation | Parameters Notes Reference
B NéB +11f p = bearing pressure Bazaraa
P=T3&58§ corresponding to a given (1967)
magnitude of settlement (r)
in tsf
r = settlement in inches
N = average SPT
blowcount (See Note)
B = footing width in feet
(= op r, = maximum value of * Average blowcounts | Duncan and
' (N-1.5)C, immediate settlement in for all borings over a Buchignani
width) below the base.
p = bearing pressure in tsf | Use the minimum of
these values in the
N = minimum average SPT | Settlement equation. If
blowcount * (See Note) the sand is saturated
and silty with N > 15,
Ce = width correction factor | correct the N-value as
(see Table 30) outlined in the
correction section
(= SOOE r =settlementin mm Design value of Parry
"N settlement (1977)

g = bearing pressure in
MN/m?

B = width of footing in m

Nm = representative SPT N-
value at a depth of (3/4)B
below foundation level (See
Note)
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Table 29 continued

Settlement Equation

Parameters

Notes

Reference

r i = qBO'7|c
(for NC sands)

I
r = BO.7L
i— 4 3

(for OC sands)

r; = settlement of
footing in mm

g = foundation
pressure in Kpa

B = width of footing
inm

1.7
IC = Nl.4

N = average SPT
blowcount measured
over a depth of B® "
(See Note)

The settlement of a
NC sand is 3 times
greater than that of
the same sand in an
OC state

Burland and
Burbridge (1985)

r i - qBO.75|C
(for NC sands)

I
r =qB°75 <
i—q 3

(for OC sands)

r; = settlement of
footing in mm

g = foundation
pressure in Kpa

B = width of footing
inm

1.7
IC = Nl.4

N = average SPT
blowcount measured
over a depth of B®"®
(See Note)

Very similar to
Burland and
Burbridge

Terzaghi et al.
(1996)

Note: As originally proposed, these correlations used the uncorrected SPT blowcount,
N. However, hammers delivering 60% of the theoretical energy have been the most
commonly used hammers for SPT tests, and it seems likely that the data on which these
correlations were based was obtained primarily from tests with such hammers. It therefore
seems logical to use Nsp with these correlations, and it is the recommendation of this

report that this be done.
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Table 30. Width correction factor, Cg (after Duncan and Buchignani (1976))

Footing Width, B (feet) Cs
£4 1.00
6 0.95
8 0.90
10 0.85
812 0.80
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Settlements of Pile Groups in Sand

In-situ methods, such as the SPT, can be used to estimate settlements of pile groups.
Settlements of pile groups in cohesionless soils (sands) occur rapidly and are usually
complete by the end of construction.

Piles in cohesionless soils:

Meyerhof (1976) related the settlement of pile groups (r) to standard penetration
resistance as:

r = —ZqJEI
Ny

where

r = settlement of pile group on saturated sand or gravel in inches
g = net foundation pressure in tsf applied at 2D,/3 (see Figure 49)
B = width of pile group in feet

| = influence factor of effective group embedment

=1- D, 0.5
8B
D' = effective depth = 2Dy/3
Dy, = depth of penetration in bearing layer

N; = average corrected SPT N-value within the seat of settlement (approximately
one pile group width (B) below the equivalent footing). It is the recommendation
of this report to use N; 4o in place of Ny,

If the pile group is in silty sand, Meyerhof (1976) suggests the following equation:

4qJ§
Nl

where all variables are the same as noted above.
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Figure 49. Location of equivalent footing (after Meyerhof, 1976)
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Piles in clay:

Pile groups in clay settle over longer time periods due to the longer time required for
drainage. To estimate settlements of pile groups in clay, the group is transformed to an
equivalent footing, as shown in Figure 49 (Ooi et al., 1991a). The equivalent footing is
located at 2/3 of the depth of penetration in the bearing layer (2Dyp/3). Figure 49(a)
illustrates a homogeneous bearing layer, and Figure 49(b) shows a bearing layer overlain
by a soft, non-bearing soil layer.

The settlement of the equivalent footing is estimated using the same procedures as for
shallow foundations. As noted by Ooi et al. (1991a), three components contribute to the
total settlement of a pile group in clay:

1. immediate settlement
2. consolidation settlement and

3. secondary compression settlement.
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Bearing Capacity of Footings on Sand

The SPT can be used two ways to estimate the bearing capacity of footings on sand:

1. The SPT can be used to estimate the angle of internal friction angle (f) for the sands,
and this can be used with bearing capacity theories to estimate bearing capacity.

2. The bearing capacity can be estimated directly using the equation suggested by
Meyerhof (1956) and modified by Tan et al. (1991):

NB D, §
qult = E wl + CWZ Ef%l

where

guit = ultimate bearing capacity in tsf

N = the average blow count corrected for submergence in saturated very fine or
silty sand as shown in Section 5. N is averaged over a depth 1.5B below
the footing (Meyerhof, 1956). It is the recommendation of this report to use
Nso with this correlation.

B = footing width (least dimension) in feet
D¢ = embedment depth (depth from ground surface to base of footing) in feet

Cw1, Cwz = water table correction factors (D,, = distance from the ground surface
to the water table)

Cw=Cy,=1.0forD,, 2 Ds+1.5B

Cw =0.5and C,, = 1.0 for D, = D¢
Cwm=05andC,, =05forD, =0

R, = load inclination factor from Table 31a or 31b

Values of C,,; and C,,, for other positions of the water table (between D,, = 0 and D, =
D: + 1.5B) can be determined by interpolation (Tan et al., 1991).
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Table 31. Load inclination factors (R)) (after Tan et al., 1991)

Table 31a. For square footings

Load Inclination Factor (R))

H/V = horizontal load / DiB =0 DiB =1 D/iB =5
vertical load
0.10 0.75 0.80 0.85
0.15 0.65 0.75 0.80
0.20 0.55 0.65 0.70
0.25 0.50 0.55 0.65
0.30 0.40 0.50 0.55
0.35 0.35 0.45 0.50
0.40 0.30 0.35 0.45
0.45 0.25 0.30 0.40
0.50 0.20 0.25 0.30
0.55 0.15 0.20 0.25
0.60 0.10 0.15 0.20

Table 31b. For rectangular footings

Load Inclination Factor (R))
Load Inclined in Width Direction Load Inclined in Length Direction
H/V = DiB =0 DiB =1 D/B =5 D/B =0 DiB =1 DiB =5
horizontal
load /
vertical load

0.10 0.70 0.75 0.80 0.80 0.85 0.90
0.15 0.60 0.65 0.70 0.70 0.80 0.85
0.20 0.50 0.60 0.65 0.65 0.70 0.75
0.25 0.40 0.50 0.55 0.55 0.65 0.70
0.30 0.35 0.40 0.50 0.50 0.60 0.65
0.35 0.30 0.35 0.40 0.40 0.55 0.60
0.40 0.25 0.30 0.35 0.35 0.50 0.55
0.45 0.20 0.25 0.30 0.30 0.45 0.50
0.50 0.15 0.20 0.25 0.25 0.35 0.45
0.55 0.10 0.15 0.20 0.20 0.30 0.40
0.60 0.05 0.10 0.15 0.15 0.25 0.35
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Bearing Capacity of Piles in Sand

Penetration resistance (N) can be used to estimate the point capacity (pile tip
resistance) and the shaft resistance (skin friction) of piles and drilled shafts. The SPT
method provides a preliminary guide for pile capacity and length estimates. Wave
equation analyses, PDA measurements during driving, and perhaps CAPWAP analyses
and pile load tests should be used to verify design assumptions.

Meyerhof (1976) developed a simple procedure for estimating pile capacities based
on SPT N-values. Ultimate pile bearing capacity is the sum of the point resistance Q)
and the shaft resistance (Qs). Both components of the ultimate capacity can be estimated
using SPT N-values. The ultimate point resistance can then be calculated by:

Qp,ult = qup

where

Qp,uit = Ultimate point resistance of a pile in a cohesionless soil stratum
gp = point resistance in tsf

A, = area of pile tip in ft*

The point resistance per unit area of a pile driven into a cohesionless soil can be
estimated by:

0.4N,D,
a, = B £ Qi
where

N; = average corrected SPT N-value near the pile tip. The original form of this
equation uses an N-value corrected for overburden pressure only. It is the
recommendation of this report to use N; g instead of N

N = measured SPT N-value
s, = effective overburden pressure at pile tip in tsf
B = pile width or diameter (same length units as Dy,)
Dy, = depth of pile driven into cohesionless soil stratum (same length units as B)
Qiimit = limiting point resistance
= 4N; for sands

= 3N; for non-plastic silts
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The ultimate shaft capacity of a pile in a cohesionless soil stratum can then be
calculated by:

Qs,ult = qus
where

gs = skin friction in tsf
A, = surface area of pile shaft in ft°

The skin friction of a pile driven into a cohesionless soil stratum can also be estimated
from SPT N-values using equations by Meyerhof (1976):

N _ :
a, :—0 (tsf) for displacement piles
—l (tsf) for non-displacement piles

where

gs = skin friction in tsf

N= average uncorrected SPT N-value measured along the pile shaft. It is the
recommendation of this report to use Ngo instead of N.

Figures 50 and 51 show variations of measured values of g, and gs with N for
cohesionless soils. The plots include data for different soil types (gravel, sand, and silt)
and different methods of pile installation (driven piles and drilled shafts).

The Meyerhof equations presented above apply to homogeneous conditions. Where
the soil bearing layer overlies a weaker layer, the piles may punch into the weaker layer, as
shown in Figure 52 Qoi et al., 1991a). Meyerhof (1976) suggests that if the distance
between the pile tip and the weak layer (H) is less than 10 pile diameters (10D), the
ultimate point resistance should be calculated as:

(qlimit - qo)

10D £ qlimit

0, =0, +
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where

gp = ultimate unit tip resistance
Jo = limiting unit tip resistance in the weaker stratum

Qiimit = limiting unit tip resistance in the stronger stratum

Neely (1990a) performed load tests on long and short expanded-base (Franki) piles
and developed relationships between ultimate point resistance and SPT N-values for this
type of pile. Expanded-base piles are illustrated in Figure 53. In his studies, Neely defined
a long pile as one with a D/Dy, ratio greater than 10, where D is the embedment depth of
the maximum cross section of the base taken as the sum of the driven length and one-half
the base diameter, and Dy, is the diameter of the expanded base. A short pile is one with
D/Dy, less than 10. Empirical relationships between ultimate point resistance and SPT N-
values are shown in Figure 54 (for long expanded-base piles) and Figure 55 (for short
expanded-base piles). Note that the N-values used in these figures have been corrected to
1 tsf of overburden pressure using the Peck et al. (1974) equation:

e 20U
N, =@0.77log— N
e S, u

where
N; = N-value corrected to 1 tsf of overburden pressure. It is the recommendation

of this report to use N; g0 instead of N; when using Figures 54 and 55.

s ' = effective overburden pressure in tsf

\

N = measured N-value

Bazaraa and Kurkur (1986) worked with different types of piles at sites with medium to
stiff cohesive soils underlain by medium to coarse sand. Piles analyzed for ultimate load
capacities fall into 1 of 4 categories:

| - Prepakt piles using high pressure for mortar injection.

Il - Driven piles, Bauer piles carefully installed, Prepakt piles with low injection pressures.
Il - Bored piles carefully installed, Bauer piles with some installation defects.

IV - Bored piles with some installation defects.
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The authors summarized correlations of pile capacities with SPT N-values for both
cohesionless and cohesive soils in Tables 32 and 33:

Table 32. Correlations of pile capacities and penetration resistance for piles in
cohesionless soil (data from Bazaraa and Kurkur (1986))

Pile Type Pile Diameter, d Unit Shaft Unit Point
(cm) Resistance, g Resistance, qp
(tonnes/m?) (tonnes/m?)
(See Note) (See Note)
Raymond <50 4 + 0.1N; --
Raymond > 50 (d/50)(4 + 0.1Ny) -
I, I <50 Ny/4.5 20N,
I, I > 50 (d/50)(Ng/4.5) (d/50)(20N,)
I, v <50 Ny/15 13.5N,
I, v > 50 (d/50)(NJ/15) (d/50)(13.5N,)
where

Ns = average SPT N-value along pile shaft (See Note)

N, = average SPT N-value within a distance of 1d beneath the pile tip and 3.75d
above it (See Note)

£ 50 blows/foot

d = pile diameter or width in cm

Note: As originally proposed, this correlation used the uncorrected SPT blowcount, N.
However, hammers delivering 60% of the theoretical energy have been the most
commonly used hammers for SPT tests, and it seems likely that the data on which the
correlation was based was obtained primarily from tests with such hammers. It therefore
seems logical to use Ngo with this correlation, and it is the recommendation of this report
that this be done.
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Table 33. Correlations of pile capacities and penetration resistance for piles in cohesive
soil (data from Bazaraa and Kurkur (1986)

Pile Type Unit Shaft Unit Point
Resistance, g Resistance, qp
(tonnes/m?) (tonnes/m?)
(See Note) (See Note)
I Ny/3 6N,
I, v 0.2Ns 4N,
where

Ns = average SPT N-value along pile shaft (See Note)

N, = average SPT N-value within a distance of 1d beneath the pile tip and 3.75d
above it (See Note)

£ 50 blows/foot

d = pile diameter or width

Note: As originally proposed, this correlation used the uncorrected SPT blowcount, N.
However, hammers delivering 60% of the theoretical energy have been the most commonly
used hammers for SPT tests, and it seems likely that the data on which the correlation was
based was obtained primarily from tests with such hammers. It therefore seems logical to
use Ngo with this correlation, and it is the recommendation of this report that this be done.
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Bearing Capacity of Drilled Shafts

The SPT can be used to estimate shaft resistance (s) and base resistance @p) of
drilled shafts in sands. While few field load tests have been performed on drilled shafts in
sands, several methods have been developed relating N-values to drilled shaft capacity.
Ooi et al. (1991b) have summarized procedures for estimating gs and g, for drilled shafts in
sands in Tables 35 and 36.

Table 34. Summary of procedures for estimating shaft resistance (qs) of drilled shafts in
sand (after Ooi et al., 1991b

Reference Description Notes

Meyerhof (1976) _ N Same as for non-

ds = 100 (tsf)  (See Note) displacement piles
Quiros and Reese Limit of 2 tsfis the
(2977) g, =0.026N < 2 tsf (See Note) maximum value ever

measured
Reese and Wright _N
(1977) g, = 32 (tsf) for N£53
N- 53
g, = +1.6 (tsf) for 53 <N £100
450
(See Note)

Note: As originally proposed, this correlation used the uncorrected SPT blowcount, N.
However, hammers delivering 60% of the theoretical energy have been the most commonly
used hammers for SPT tests, and it seems likely that the data on which the correlation was
based was obtained primarily from tests with such hammers. It therefore seems logical to
use Ngo with this correlation, and it is the recommendation of this report that this be done.
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Table 35. Summary of procedures for estimating base resistance (q,) of drilled shafts in

sand (after Ooi et al., 1991b)

p

It is the recommendation of
this report that N, g0 be used
with this correlation

Reference Description Notes
Meyerhof (1976) _2ND, gp < 4N,/3 for sands
q, = 16D (tsf) <N, f lasti
gp < N; for nonplastic

silts

Lower limiting values
than for driven piles. qp
increases linearly with
embedment up to about
10 shaft diameters and
then remains
approximately constant
with depth.

Reese and Wright (1977)

2
q, = §N (tsf) for N £ 60
q, =40 (tsf) for N>60

(See Note)

gp based on a downward
movement equal to 5%
of the base diameter (
from load tests)

Reese and O'Neill (1988)

For shaft diameters < 50
inches

g, =0.6N (tsf) for NE75
q, =45 (tsf) forN>75

For shaft diameters > 50
inches

Qpr :?qp (tsf) (see notes

p

(See Note)

gp based on a downward
movement equal to 5%
of the base diameter (
from load tests)

gpr = reduced base
resistance for D, > 50
inches

D, = diameter of drilled
shaft (pier) base in
inches

gp = ultimate end
bearing resistance as
calculated by methods in
this table

where
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N; = SPT blowcount corrected to 1 tsf of overburden pressure (See Note)
=[0.77 log (20/s )N

s, = effective overburden pressure in tsf

N = uncorrected blowcount

D, = base diameter of drilled shaft (pier) in feet (in inches for Reese and O'Neill
(1988))

Dy, = embedment of drilled shaft in sand bearing layer

Note: As originally proposed, this correlation used the uncorrected SPT blowcount, N.
However, hammers delivering 60% of the theoretical energy have been the most commonly
used hammers for SPT tests, and it seems likely that the data on which the correlation was
based was obtained primarily from tests with such hammers. It therefore seems logical to
use Ngo with this correlation, and it is the recommendation of this report that this be done.
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Correlations Between SPT and Liquefaction Potential of Sands

Sites containing saturated granular soils at low relative densities are susceptible to
liquefaction during earthquakes. Liquefaction is defined by Youd and Idriss (1997) as "the
phenomena of seismic generation of large pore-water pressures and consequent severe
softening of granular soils." Liquefaction has been responsible for significant damage to
structures during earthquakes.

A simplified procedure for evaluating the liquefaction resistance of soils was developed
by Seed and his colleagues and has been in use for many years. The procedure was
developed from evaluations of field observations (presence of sand boils, ground fissures,
and lateral spreads) and field and laboratory test data. Data collected for development of
the simplified procedure comes mostly from sites with level to gently sloping terrain and
Holocene alluvial or fluvial sediment at depths less than 50 feet (Youd and Idriss, 1997). In
December 1997, the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils
was held to further update liquefaction analyses.

To evaluate liquefaction resistance of soils using the simplified procedure, two
variables are estimated or calculated:

1. The cyclic stress ratio (CSR). CSR is a measure of the seismic loading applied to a
soil during an earthquake.

2. The cyclic resistance ratio (CRR). CRR is a measure of the capacity of the soil to resist
liquefaction. Curves separating combinations of CRR and CSR that cause liquefaction
from those that do not are shown in Figure 56 for soils containing different percentages
of fines.

The CSR can be calculated using the equation from Seed and Idriss (1971) as
presented by Youd and Idriss (1997):

CSR = (t av/Svol) = 0-65(ama></g)( SV0/S Vol)rd
where

amax = peak horizontal acceleration at the ground surface
g = acceleration due to gravity

S0 = total vertical overburden stress

Svo = effective overburden stress

rq = stress reduction coefficient

116



0.6 o5

L 2581

Pareent Fines =

0.5
24
S - |
> 04
]
—
g -
F’ 1 ! ~CRR curves for 5,15, and
"E‘% - / 35 pecceat fines, respectively
o ) : /
w 0.3 e t 1
wy
o
=
o
o
0
-
(&

FINES CONTENT 2 3%

Moedified Chinese Code Proposal (clay content.= 3%) @

Marzinal Na
Liguefaction Liguefaction Liguefzction
— ,._-r"| Adjustment Pan-Americandaa ® =
— Recommendsd || fapanese data . 2 e
i ‘ By Workshop || Chinese daca A 1 A
0 10 20 30 40 50

Ny s (blows/foot)

Figure 56. Simplified base curve recommended for estimating liguefaction potential
from SPT data along with empirical liquefaction data (modified from Seed et al., 1985
by Youd and Idriss, 1997)

17



Participants at the 1997 NCEER workshop recommend the following equations for
calculating rq:

rq = 1.0 - 0.00765(z) forz £9.15 m (30 feet)

rq =1.174 - 0.0267(2) for9.15m<z £ 23 m (75 feet)
rq = 0.744 - 0.008(z) for 23 <z £ 30 m (100 feet)

rq = 0.50 forz>30m

where

z = depth below ground surface in meters

The calculated value of CSR can then be used along with N g to determine the
likelihood of liquefaction using Figure 56. It is only valid for earthquakes of magnitude 7.5.
If the magnitude is different than 7.5, the CSR value must be scaled by a magnitude scaling
factor (MSF) as shown below:

CSRM 175 = MSF(CSR75)

where

CSR; s = cyclic stress ratio based an earthquake of magnitude 7.5

MSF = 10***/M*°® (Idriss 1990). This is a lower bound and is conservative to
use.

M = moment magnitude of the earthquake

Figure 56 can be used two different ways:

Method 1

Calculate CSR as outlined above

Use N; 0 Without any additional corrections

Use the percent fines curve in Figure 56 that corresponds to the fines content (the
portion passing the #200 sieve) of the soil being analyzed. If the point defined by the
values of CSR and N 4, falls to the left of the approximate curve, liquefaction is likely. If
the point falls to the right of the curve, liquefaction is unlikely.

Method 2

Calculate CSR as outlined above
Correct Ny 60 t0 Ny 60 - ¢ (Clean sand blow count) as shown below:
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N1,60-cs=a + b(Nie0)

where a and b are shown below:

Table 36. Fines content corrections (from Youd and Idriss, 1997)

Fines content, FC (%) a b
£5 0 1.0
5-35 exp [1.76 - (190/FC?] [0.99 + (FC*/1000)]
3 35 5.0 1.2

Use Figure 56 with the clean sand curve (the FC £ 5 curve) and the corrected blow
Count = N1’60 - Ccs

If the point defined by the values of CSR and N;¢o falls to the left of the curve,
liqguefaction is likely. If the point falls to the right of the curve, liquefaction is unlikely.
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Appendix A

ASTM Specification D 1586
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Appendix B

Unit Conversions and Drill Rod Sizes
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Units Conversion Factors

Force

Pounds Kips U.S. Tons Newtons Kilonewtons | Metric Tons

1.00 0.001 0.0005 4.45 0.00445 0.000454

1000 1.00 0.500 4450 4.45 0.454

2000 2.00 1.00 8900 8.90 0.908

0.225 0.000225 0.000112 1.00 0.001 0.000102

225 0.225 0.112 1000 1.00 0.102

2200 2.20 1.10 9800 9.80 1.00

Length

Inches Feet Centimeters Meters

1.00 0.083 2.54 0.0254

12.0 1.00 30.5 0.305

0.394 0.0328 1.00 0.01

394 3.28 100 1.00

Stress

Ib/ft? Ib/in® k/ft* i (1) KN/m? t/m® (2)
(KPa)

1.00 0.00694 0.001 0.0005 0.0479 0.00488

144 1.00 0.144 0.0720 6.90 0.702

1000 6.94 1.00 0.500 47.9 4.88

2000 13.9 2.00 1.00 95.8 9.76

20.9 0.145 0.0209 0.0104 1.00 0.102

205 1.42 0.205 0.102 9.81 1.00

(1) U.S. Ton (2) Metric Ton

Unit Weight of Water

=62.4 Ib/ft’ =0.000433 k/in® =0.000217 t/in® (U.S. ton)
=0.0361 Ib/in® =9.81 KN/m® =1.00 t/m® (Metric ton)
=0.0624 k/ft® =0.00000981 KN/cm® =0.00000100 t/cm® (Metric ton)
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Drill Rod Sizes

Size O.D. I.D. Threads Per Weight (Weight kg/m)
(inches) (inches) Inch (Ibs.ft.)
E 1-15/16 7/8 3 2.7 4.0
EW 1-3/8 15/16 3 2.8 4.2
A 1-5/8 1-1/8 3 3.8 5.7
AW 1-3/4 1-1/4 3 4.3 6.4
B 1-7/8 1-1/4 5 3.6 54
BW 2-1/8 1-3/4 3 4.3 6.4
N 2-3/8 2 4 5.0 74
NW 2-5/8 2-1/4 3 5.5 8.2
HW 3-1/2 3-1/16 3 8.8 13.1
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